
Parallel Forward Deduction Algorithms of General-Purpose
Entailment Calculus on Shared-Memory Parallel Computers

Yuichi Goto, Daisuke Takahashi and Jingde Cheng
Department of Information and Computer Sciences, Saitama University

255 Shimo-Okubo, Saitama-shi, Saitama 338-8570, Japan
E-mail: gotoh@aise.ics.saitama-u.ac.jp
{daisuke, cheng}@ics.saitama-u.ac.jp

Abstract

An automated forward deduction system for entail-
ment calculus is an indispensable component of many
application systems – such as theorem finding, active
database, knowledge discovery systems – that require
an autonomous reasoning engine. The performance of
an automated forward deduction system is crucial to
its applicability. In this paper, we present some par-
allel forward deduction algorithms for general-purpose
entailment calculus on shared-memory parallel comput-
ers. We also present some evaluation results of these
algorithms to show their effectiveness and efficiency.

1. Introduction

Reasoning rule generation and automated theorem
finding [3, 10, 11] are two fundamental issues in knowl-
edge engineering. To resolve these two problems, it is
essential to establish a domain-independent fundamen-
tal theory underlying an autonomous reasoning mech-
anism, and then to develop automatic reasoning tools
based on that mechanism.

A decade ago, Cheng proposed some strong relevant
logics and showed that an entailment calculus based on
those logics can underlie reasoning rule generation in
knowledge-based systems and automated theorem find-
ing [3, 4, 5]. We are developing an automated forward
deduction system for general-purpose entailment cal-
culus. Named EnCal, this system supports entailment
calculus based on strong relevant logics as well as other
logics [6].

However, two problems stand in the way of EnCal’s
applicability as a practical autonomous reasoning en-
gine: slow execution and the large amount of memory
needed [7], when EnCal deduces a lot of logical or em-

pirical theorems.
Theorems to be deduced are put on main memory,

because EnCal’s processing requires frequent access to
theorems. So the amount of main memory needed in-
creases linearly, as the number of theorems increases.
We are not concerned with this problem so long as the
number of theorems is small. However, the problem
becomes serious when the number of theorems is large,
for example, more than 1 million. It is difficult for se-
quential computers, such as personal computers (PCs),
to solve this problem.

Another problem is the exponential increase in ex-
ecution as the number of theorems to be deduced in-
creases. So if the number of theorems is more than 1
million, execution will take an impractically long time.
Nevertheless, we think that EnCal must be able to de-
duce large numbers of theorems if it is to become a
practical autonomous reasoning engine. Furthermore,
the processing speed of sequential computers is becom-
ing saturated. Hence parallel processing is one of the
solutions for automated forward deduction systems.

In this paper, we focus on reducing execution rather
than saving memory, because parallel computers have
quite a bit more main memory than sequential com-
puters like PCs do. We show that execution is re-
duced by parallelizing EnCal – that is, by adopting
two parallel algorithms: one a master-slave model and
the other a process-partitioning model. These algo-
rithms are discussed, and the results of implementing
these algorithms on shared-memory parallel computers
are presented.

2. Terminology

In logic, a notion abstracted from various condition-
als is called an “entailment”. In general, an entailment
– for instance, “A entails B” or “if A then B” must

168

concern two parts connected by connective “ . . . entails
. . . ”, which are called the antecedent and the conse-
quent of that entailment, respectively. The truth value
and/or validity of an entailment depends not only on
the truth values of its antecedent and consequent but
also, and more essentially, on a necessarily relevant
and/or conditional relation between its antecedent and
consequent [1, 2].

An entailment calculus is a formal logical system
where the notion of entailment is represented by a
primitive connective and entailments are a part of its
logical theorems.

A formal logic system L is a triplet (F (L), `L,
Th(L)) where F (L) is the set of all well-formed for-
mulas of L, `L is the logical consequence relation of L
such that for P ⊆ F (L) and C ∈ F (L), P `L C means
that within the framework of L taking P as premises,
we can obtain C as a valid conclusion, and Th(L) is
the set of logical theorems of L such that ∅ `L t holds
for any t ∈ Th(L).

For a formal logic system where the notion of en-
tailment is represented by a primitive connective “⇒”,
a formula is called a zero degree formula if and only
if there is no occurrence of ⇒ in it; a formula of the
form A ⇒ B is called a first degree formula (also called
a first degree entailment) if and only if both A and B
are zero degree formulas; a formula of the form ¬A is
called a first degree formula if and only if A is a first
degree formula; a formula of the form A ∗ B, where ∗
is a conjunction or disjunction connective, is called a
first degree formula if and only if both A and B are
first degree formulas, or either A or B is a first degree
formula and the other is a zero degree formula.

Let k be a natural number. A formula of the form
A ⇒ B is called a kth degree formula (also called a
kth degree entailment) if and only if both A and B are
(k−1)th degree formulas, or either formula A or B is a
(k−1)th degree formula and the other is a jth(j < k−1)
degree formula; a formula of the form ¬A is called a kth

degree formula if and only if A is a kth degree formula;
a formula of the form A∗B, where ∗ is a conjunction or
disjunction connective, is called a kth degree formula
if and only if both A and B are kth degree formulas,
or A or B is a kth degree formula and the other is a
jth(j < k) degree formula.

Let (F (L), `L, Th(L)) be a formal logic system and
k be a natural number. The kth degree fragment of L,
denoted by Thk(L), is a set of logical theorems of L
that is inductively defined as follows (in the terms of
Hilbert-style formal systems): (1) if A is an axiom of
L, then A ∈ Thk(L), (2) if A is a jth(j ≤ k) degree
formula that is the result of applying an inference rule
of L to some members of Thk(L), then A ∈ Thk(L),

and (3) nothing else is a member of Thk(L), i.e., only
those obtained from repeated applications of (1) and
(2) are members of Thk(L).

3. EnCal and its processing features

EnCal consists of the following major parts. EnCal-
P is a pattern-driven implementation of the inference
rule of Modus Ponens (MP for short) for propositional
logics. EnCal-Q is an extension of EnCal-P to deal
with first order predicate logics. EnCal-E is a tool for
reasoning about empirical entailments with a logical
theorem schema (LTS for short) generated by EnCal-P
and EnCal-Q. EnCal-Q2 is an extension of EnCal-Q
to deal with second order predicate logics. EnCal-E2
is an extension of EnCal-E to deal with second order
theories. EnCal-T is a tool kit for the user to edit input
data for EnCal, transform the theorems into various
forms specified by the user, and provide the user with
various set operations on the theorems.

This paper focuses on EnCal-P, which is the most
basic component of EnCal. EnCal-P works with a pat-
tern pool and a datum pool. For the given axiom
schemata of a specified logic L and the degree k, EnCal-
P puts all axiom schemata of L in the pattern and da-
tum pools at first, and then repeatedly applies MP to
every element of the pattern pool and every element
of the datum pool, such that once a new LTS whose
degree is not higher than k is reasoned out, it is added
to both the pattern and datum pools. This process
continues until no new LTS whose degree is not higher
than k can be reasoned out.

EnCal-P consists of six parts, as follows.

1. Inputting premises part

2. Pattern matching part

3. Reasoning part; used MP
(By MP, we can get ’B’ from two LTSs, ’A ⇒ B’
and ’A’. An LTS deduced by using MP is always
the consequent part of an LTS, such as ’B’, or an
instance of that.)

4. Checking verbose LTSs part

5. Adding a new LTS part

6. Outputting new LTSs part

EnCal-P has a loop structure of from part 2 to part 6,
during deducing new LTSs.

In EnCal-P, the heaviest process is Pattern Match-
ing (PM for short). PM judges whether X, which is
picked up from the datum pool, is the same as Y , which

169

is picked up from the pattern pool or an instance of Y .
PM is used in two parts, which are the pattern match-
ing part (PM-part for short) and the checking verbose
LTSs part (CVL-part for short).

The frequency of PM in these two parts can be made
equal to the execution of EnCal-P. To get a complete
kth degree fragment of a logic system, we must apply
MP to all combinations for already known LTSs in each
pool. The frequency of PM in PM-part represents the
number of all combinations of LTSs that are produced
finally (f-LTSs for short). It is possible to represent
the frequency of PM in CVL-part by approximation.
When a new LTS is deduced, we must check all already
known LTSs to determine whether or not this LTS is
verbose.

We try to represent the equations of PM time, which
means the time it takes to execute one PM process.
The frequency of PM process depend on the number of
LTSs to be deduced in each loop. The number of theo-
rems in each loop depend on the number of LTSs which
are produced finally and the ratio of success matching
in PM-part. Hence these equations are based on two
suppositions. First, the number of LTSs to be deduced
in each loop depends on normal distribution. Second,
the ratio of matching in the PM-part is independent of
each loop and is constant.

Following are the parameters:

• the number of LTSs that are produced finally
(f-LTS for short) is Nf ;

• the number of premises (axiom schemata of logic)
is T ;

• the number of loops is l;

• the number of f-LTSs to be deduced in each loop
is Nli , (1 ≤ i ≤ l);

• the number of verbose LTSs to be deduced in each
loop is Vli , (1 ≤ i ≤ l);

• the ratio of matching in the PM-part is p;

• Ai, (1 ≤ i ≤ l) is the divided accumulation prob-
ability on normal distribution to l.

Let Spm denote the PM time in the PM-part, giving
the following:

Spm = T 2 · N2
f +

l∑

i=1

Vli . (1)

The PM time that depends on Nf is independent of
Nli , Vli . T 2 · N2

f is the PM time that depends on Nf .

Nli and Vli depend on p and Nf . Nli is given as
follows:

Nli = Ai · Nf . (2)

Vli is the number of LTSs to be matched in the PM-
part without Nli :

Vli = p

{
Nli−1

(
2T + Nli−1 + 2

i−2∑

k=1

Nlk

)}

− Nli (2 < i ≤ l), (3)
Vl1 = pT 2 − Nl1 , (4)
Vl2 = p{(T + Nl1)Nl1 + Nl1T} − Nl2 . (5)

Let Scvl denote PM time in the CVL-part, giving
the following:

Scvl =
l∑

i=1

{
Nli ·

(
T +

i−1∑

k=1

Nlk

)
+

1
2
Nli(Nli − 1)

}

+
1
2

[
l∑

i=1

Vli +
l∑

i=1

{
Vli ·

(
T +

i−1∑

k=1

Nli

)}]
.

(6)

In eq. (6), the part of PM time that depends on Nf

is given as follows:

l∑

i=1

{
Nli ·

(
T +

i−1∑

k=1

Nlk

)
+

1
2
Nli(Nli − 1)

}
, (7)

and the PM time that depends on Vli is given as follows:

1
2

[
l∑

i=1

Vli +
l∑

i=1

{
Vli ·

(
T +

i−1∑

k=1

Nli

)}]
. (8)

Let Stotal denote the PM time of two parts, giving
the following:

Stotal = Spm + Scvl. (9)

Stotal, Spm and Scvl can be seen similarly in Nf , since
Vli and Nli depend on Nf :

Spm ≈ 3N2
f , (10)

Scvl ≈ 2N2
f + N3

f , (11)
Stotal ≈ 5N2

f + N3
f . (12)

Scvl is Nf times as large as Spm. The processing
PM in the CVL-part becomes heavier as the number
of f-LTSs increases.

Therefore, in order to increase the PM processing
number in unit time, we need to distribute the PM
processes among more than two processors.

170

PM-part

Reasoning

CVL-part

Adding a New LTS

 Do I have
any Patterns?

False

Degree over

Old

Success

New

Yes

No

Success

Dividing data

Do I create
 New LTSs?

W
or

ke
r

W
or

ke
r

W
or

ke
r

W
or

ke
r

W
or

ke
r

CVL-part between workers

Outputing LTSs

Inputing premises

Yes

No

Figure 1. Master-slave model

4. Two parallel algorithms

We now present two parallel forward deduction al-
gorithms of EnCal-P on shared-memory parallel com-
puters.

4.1. Master-slave model

A parallel algorithm of EnCal-P on shared-memory
parallel computers is based on the master-slave model.
This model is shown in Fig. 1. The equation of PM
time in this model consists of three parts: the PM-part,
the CVL-part, and the between-workers CVL-part. Let
P denote the number of processors. Let Mpm, Mcvl

denote PM times of PM-part and CVL-part, which are
represented as follows, for use in Spm or Scvl:

Mpm =
1
P

Spm, (13)

Mcvl =
1
P

Scvl. (14)

In the between-workers CVL-part, the reasoning result
of one worker may include verbose LTSs for the results
of the other worker. In loop number i, the number of
verbose LTSs of one worker is at most

∑i−1
k=1(Nlk) −

1
P (Nli + Vli). So let Mworker denote PM time in the
between-workers CVL-part, as shown in the following

equation:

Mworker =
P − 1
2P

(
l∑

i=1

N2
li

)

+
P − 1

4

l∑

i=1

{
Nli

(i−1∑

k=1

Nlk − 1
P

Nli

)}

+
Pl

4
(l + 1). (15)

Let Mtotal denote PM time in this model:

Mtotal =
1
P

Stotal + Mworker. (16)

Mtotal can be approximated by Nf :

Mworker ≈ P · N2
f , (17)

Mtotal ≈
1
P

(5N2
f + N3

f) + P · N2
f . (18)

This model has the following advantages.

1. If the number of f-LTSs (Nf) is P 2 ¿ Nf

(from eq. (18)), the execution spent on all PM
shrinks in proportion to the number of processors.

2. Therefore, we know two things:

171

Inputing premises

Outputing LTSs

PM-part

Reasoning

Shared CVL-part

Add New LTS

 Do I have
any Pattern?

False

degree over

Old

success

New

Y

N

success

Dividing
Patterns

C
he

ck
 v

er
bo

se
 L

TS

 Are there
"OLD" in results?

Yes

No
 Do I have
any Pattern?

Y

New
N

C
he

ck
 v

er
bo

se
 L

TS

C
he

ck
 v

er
bo

se
 L

TS

C
he

ck
 v

er
bo

se
 L

TS

C
he

ck
 v

er
bo

se
 L

TS

Old

Figure 2. Process-partitioning model

1

10

100

1000

10

S
pe

ed
-u

p
ra

tio
 (t

im
es

)

Number of f-LTSs

4 processors

16 processors

256 processors

64 processors

2 10 3 10 4 10 5 10 6 10 7 10 8

Figure 3. Theoretical speed-up ratio (Master-
slave model)

(a) If there are fewer than 10 processors, the ex-
ecution to be spent on all PM shrinks in pro-
portion to the number of processors without
Nf .

(b) If there are more than 10 processors, we can
expect to shrink the execution in proportion

to the number of processors when Nf is more
than P 3.

Fig. 3 shows the theoretical speed-up ratio and the
number of f-LTSs.

This model has a disadvantage in that there may
be many instances of f-LTSs. In this paper, ’instance’
means the following. By MP, we can get ’A ⇒ C’
from two LTSs, ’(A ⇒ B) ⇒ (A ⇒ C)’ and ’A ⇒ B’.
’A ⇒ C’ is a logical formula, the same as ’A ⇒ B’.
Therefore, ’A ⇒ C’ is an instance of ’A ⇒ B’. For
example, let n denote that the number of instances is
n times as large as the number of core f-LTSs, which
includes no instances. Let N

′

f denote the number of
core-fLTSs, and Mtotal including instances is given as
follows by N

′

f , n:

Mtotal ≈ 1
P

(5N2
f + N3

f) + P · N2
f

≈ (n + 1)2

P
(5N

′2
f + N

′3
f) + (n + 1)2P · N

′2
f .

(19)

If P is more than n or n is constant, we expect to
decrease the execution in proportion to the number of
processors.

172

1

10

100

1000

10

S
pe

ed
-u

p
ra

ito
 (t

im
es

)

Number of f-LTSs

4 processors

16 processors

64 processors

256 processors

2 10 3 10 4 10 5 10 6 10 7 10 8

Figure 4. Theoretical speed-up ratio (Process-
partitioning model)

4.2. Process-partitioning model

Another parallel algorithm is based on the process-
partitioning model. This model is shown in Fig. 2.

The main feature of this model is that only PM pro-
cesses in the CVL-part are shared among processors.
Other parts are processed by one processor. Let Ppm,
Pcvl, and Ptotal denote the PM time of the PM-part,
the CVL-part, and both parts by Spm, Scvl:

Ppm = Spm, (20)

Pcvl =
1
P

Scvl, (21)

Ptotal = Spm +
1
P

Scvl. (22)

As follows can be approximated by Nf :

Ptotal ≈ 3N2
f +

1
P

(2N2
f + N3

f). (23)

This model has the following advantages:

1. If Nf/P is more than 104, the execution to be spent
on all PM shrinks in proportion to the number of
processors.

2. The number of instances included in f-LTSs is as
large as the result of the sequential model.

Fig. 4 shows a theoretical speed-up ratio and number
of f-LTSs.

The disadvantage of this model is that if Nf/P is
less than 104, we cannot expect the execution spent
on all PM to shrink in proportion to the number of
processors, because Ppm ¿ Pcvl is not satisfied when
Nf is small.

5. Implementation and results

We have implemented only the master-slave model
with C and Open MP [8, 9] on the Sun Enterprise 6000
(Ultra SPARC 168 MHz x 16, 4 Gbyte main memory).

Table 1 shows the execution data of the sequential
model and the master-slave model. Ten(3) denotes the
3rd degree fragment of the relevant logic system T with
entailment and negation. CMLen(3) denotes the 3rd
degree fragment of classical mathematical logic with
entailment and negation. Te(4) denotes the 4th degree
fragment of relevant logic system T with entailment.
Ee(4) denotes the 4th degree fragment of relevant logic
system E with entailment. Re(4) denotes the 4th de-
gree fragment of relevant logic system R with entail-
ment.

Table 1 shows us several things:

1. The number of core f-LTSs to be based on one logic
theory is a value different from the same degree
fragment to be based on another.

2. The execution depends on the number of f-LTSs
and the complexity of the logic theory.

3. The included instance ratio in the f-LTSs depends
on the number of processors.

4. The execution shrinks in proportion to the number
of processors.

1. is a reason why it is difficult for us to predict
the execution of EnCal. We cannot know it without
executing EnCal.

2. is evidence of which we represented the equations.
The number of f-LTSs and the complexity of logic the-
ories influence the frequency of PM processing. So the
execution also increases when the number of f-LTSs in-
creases or when the number of f-LTSs is deduced from
more complicated theorems.

We discuss 3. and 4. with the experimental results
and equations. Fig. 5 shows the including instances in
the f-LTSs ratio and the number of processors. The in-
cluding instance ratio becomes constant when the num-
ber of processors increases. The number of instances in
f-LTSs to be deduced from CMLen, which is the high-
est ratio among these 16 processors, is only 2.7 times
as large as the number of core f-LTSs. If the includ-
ing instance ratio is constant with a large number of
processors, (n +1)2 < P (from eq. (19)) must be satis-
fied. Therefore, we can expect that the speed-up ratio
increases with the number of processors.

Fig. 6 shows the speed-up ratio of observed values.
In the result of Ten(3), the speed-up ratio is saturated
for the number of processors. The reason for this is that

173

0

10

20

30

40

50

60

70

80

1 2 4 8 16

In
cl

ud
in

g
in

st
an

ce
s

ra
tio

 (%
)

Number of processors

Ten 3rd degree

CMLen 3rd degree

Te 4th degree

Ee 4th degree

Re 4th degree

Figure 5. Including the instance ratio in f-LTSs

Table 1. Real execution time
Logic systems sequential 2 processors 4 processors 8 processors 16 processors

(kth degree) (core f-LTS/f-LTSs) (core f-LTS/f-LTSs) (core f-LTS/f-LTSs) (core f-LTS/f-LTSs) (core f-LTS/f-LTSs)

Ten(3) 0.617s

(252/252)

0.397s

(252/315)

0.252s

(252/377)

0.237s

(252/395)

0.211s

(252/386)

CMLen(3)
3h 31m 22s

(10649/11808)

2h 5m 44s

(10649/18876)

1h 8m 52s

(10649/27569)

37m 12s

(10649/34899)

17m 38s

(10649/39543)

Te(4)
46m 45s

(10046/11184)

24m 43s

(10046/14518)

14m 2s

(10046/17681)

8m 14s

(10046/19698)

5m 23s

(10046/19667)

Ee(4)
2h 42m 55s

(15519/17802)

1h 37m 28s

(15519/28461)

50m 54s

(15519/30583)

30m 26s

(15519/37125)

19m 15s

(15519/38957)

Re(4)
20h 3m 51s

(35027/41280)

11h 3m 26s

(35027/57569)

5h 54m 55s

(35027/73926)

3h 15m 39s

(35027/87910)

2h 11m 43s

(35027/104461)

P 2 ¿ Nf (from eq. (18)) is not satisfied. Other results
show that the speed-up ratio increases with the number
of processors. We can conclude that the theoretical
expressions are proper and that the master-slave model
is effective.

Following are the reasons why observed values differ
from the theoretical values.

1. The overhead of thread generation influences the
execution.

2. The number of processors is small although the
including instance ratio increases.

6. Concluding remarks

In this paper, we have presented two parallel forward
deduction algorithms of EnCal-P on shared-memory
parallel computers.

The process-partitioning model is not effective
enough to be implemented on shared-memory paral-
lel computers because we cannot expect to efficiently
reduce the execution when the number of f-LTSs is less
than 104.

The master-slave model, on the other hand, is ef-
fective enough to be implemented on shared-memory
parallel computers. The execution is decreased regard-
less of the number of f-LTSs. This conclusion was con-
firmed by the results of implementation.

Many important and challenging research problems

174

0

2

4

6

8

10

12

2 4 8 16

S
pe

ed
-u

p
ra

tio
 (t

im
es

)

Number of processors
1

Ten 3rd degree (252)
CMLen 3rd degree (10649)

Te 4th degree (10046)

Ee 4th degree (15519)

Re 4th degree (35027)

Figure 6. Practical speed-up ratio

lie in this direction. For example, the master-slave
model has a disadvantage, which is that it includes
instances in f-LTSs. If we wish to improve the master-
slave model, we have to decrease the number of in-
stances in f-LTSs.

In this paper, we have not considered saving mem-
ory. If we need to deduce 106 theorems, we think that
this implementation may use 1.6 Gbyte of main mem-
ory. For the sake of practical applications, it is impor-
tant to conserve memory.

When EnCal deduces more than 106 LTSs, we
must implement it on a distributed-memory parallel
computer. So, to investigate those algorithms, we
will have to design data structures and algorithms on
distributed-memory parallel computers.

References

[1] A. R. Anderson and N. D. Belnap Jr. “Entailment: The
Logic of Relevance and Necessity”, vol. 1, Princeton
University Press., 1975.

[2] A. R. Anderson, N. D. Belnap Jr., and J. M. Dunn,
“Entailment: The Logic of Relevance and Necessity”,
vol. 2, Princeton University Press., 1992.

[3] J. Cheng, ”Entailment Calculus as a Logical Tool for
Reasoning Rule Generation and Verification,” in J.
Liebowitz (Ed.), ”Moving Toward Expert Systems Glob-
ally in the 21st Century,” pp. 386–392, Cognizant Com-
munication Co., 1994.

[4] J. Cheng, ”Entailment Calculus as the Logical Basis of
Automated Theorem Finding in Scientific Discovery,”
in ”Systematic Methods of Scientific Discovery – Pa-

pers from the 1995 Spring Symposium,” AAAI Techni-
cal Report SS-95-03, pp. 105–110, 1995.

[5] J. Cheng, “The Fundamental Role of Entailment in
Knowledge Representation and Reasoning”, Journal of
Computing and Information, vol. 2, no. 1, pp. 853–873,
1996.

[6] J. Cheng, “Encal: An Automated Forward Deduc-
tion System for General–Purpose Entailment Calcu-
lus”, In N. Terashima and E. Altman (Eds.)“Advanced
IT Tools” IFIP World Conference on Advanced IT
Tools IFIP 96 – 14th World Computer Congress, pp.
507–517, 1996.

[7] K. Nishi, J. Cheng, K. Ushijima, “Improving the Per-
formance of Automated Forward Deduction System
EnCal”, Proc. International Symposium on High Per-
formance Computing (ISHPC97), Nov. 1997, Lecture
Notes in Computer Science, vol. 1336, pp. 371–380,
Springer-Verlag (1997).

[8] Omni. RWCP OpenMP compiler project.
http://pdplab.trc.rwcp.or.jp/pdperf/Omni/.

[9] OpenMP. Simple, Portable, Scalable SMP Program-
ming. http://www.openmp.org.

[10] L. Wos, Automated Reasoning: 33 Basic Research
Problems, Prentice-Hall., 1988.

[11] L. Wos. “The Problem of Automated Theorem Find-
ing”, Journal of Automated Reasoning, vol. 10, no. 1,
pp. 137–138, 1993.

175

