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Abstract

The performance of an automated forward deduction
system is crucial to its applicability. Since a forward deduc-
tion system working for discovery has no explicitly specified
proposition or theorem given previously as goal, it often de-
duces many redundant intermediates, i.e., instances of those
that have previously deduced. Therefore, how to reduce re-
dundant intermediates is a general and difficult issue for
any forward deduction system. In particular, since a paral-
lel forward deduction system has multiple threads, the issue
is more crucial to its performance. In this paper, we present
a new algorithm to detect redundant intermediates in order
to improve performance of EnCal, an automated forward
deduction system for general-purpose entailment calculus.
We have implemented EnCal based on the new algorithm
on a shared-memory parallel computer and our experiment
showed this algorithm is effective.

1. Introduction

An automated forward deduction system for entailment
calculus is an indispensable component of many application
systems such as theorem finding and knowledge discovery
systems that require a forward reasoning engine. The per-
formance of an automated forward deduction system is cru-
cial to its applicability. Since a forward deduction system

working for discovery has no explicitly specified proposi-
tion or theorem given previously as goal, it often deduces
many redundant intermediates, i.e., instances of those that
have previously deduced. Therefore, how to reduce redun-
dant intermediates is a general and difficult issue for any
forward deduction system. In particular, since a parallel
forward deduction system has multiple threads, the issue is
more crucial to its performance.

On the other hand, reasoning rule generation and auto-
mated theorem finding [1, 9, 10] are two fundamental issues
in knowledge engineering. To solve these two problems,
it is essential to establish a domain-independent fundamen-
tal theory underlying an autonomous reasoning mechanism,
and then to develop automatic reasoning tools based on that
mechanism. Cheng proposed some strong relevant logics
and showed that an entailment calculus based on those log-
ics can underlie reasoning rule generation in knowledge-
based systems and automated theorem finding [1, 2, 4]. We
are developing an automated forward deduction system for
general-purpose entailment calculus, named EnCal, which
supports entailment calculus based on strong relevant logics
as well as other logics [3]. However, there are two prob-
lems for that EnCal serves as a practical automated reason-
ing engine: a large amount of execution time and a large
amount of memory needed for generating a large number
of logical theorems [6]. In order to solve those problems,
we have implemented a parallelization version of EnCal
on a shared-memory parallel computer. Although we suc-
cessfully achieved speed-up ratio of about 12 times on 16
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processor’s shared-memory parallel computer [5], we faced
the problem that the number of redundant intermediates in-
creases in proportion to the increase of the number of pro-
cessors. Since the problem exacerbates the performance of
EnCal, it is necessary to reduce redundant intermediates.

In this paper, we propose a new algorithm to detect and
reduce redundant intermediates in order to improve perfor-
mance of parallelization version of EnCal. We have im-
plemented EnCal based on the new algorithm on a shared-
memory parallel computer and our experiment showed this
algorithm is effective.

2. Forward deductions by EnCal

2.1. EnCal and its processing features

IF-THEN rules have played and they are still playing var-
ious important roles in knowledge-based systems. In logic,
a sentence in the form of “if. . . then. . .” is usually called
conditionalor entailment. The notion of entailment plays
the most essential role in reasoning because any reason-
ing form must invoke it.Entailment calculusis a method
to formalize a logical systemL where the notion of entail-
ment is represented by a primitive connective such that its
logical theorems are represented in the form of entailment.
A forward entailment calculusis an entailment calculus to
deduce new theorems by applying inference rules ofL to
given axioms ofL. EnCal supports forward entailment cal-
culus based on strong relevant logics as well as other logics.
It provides its users with the following major facilities [3].
For a logicL which may be a propositional logic, a first-
order predicate logic, or a second-order predicate logic, a
non-empty setP of formulas as premises, inference rules
of logic systemL and natural numberk andj as limit of
degree which is the degree of nested entailment (denoted
by “⇒” in this paper), all specified by the user, EnCal can
(1) reason out all logical theorem schemata of thekth de-
gree fragment ofL, (2) verify whether or not a formula is a
logical theorem of thekth degree fragment ofL, if yes, then
give the proof, (3) reason out all empirical theorems of the
jth degree fragment of the formula is an empirical theorem
of theory with premisesP , and (4) verify whether or not a
formula is an empirical theorem of theory with premisesP ,
if yes, then give the proof [3].

EnCal consists of six parts as follows.

1. Initialization part: it takes in premises, limit of degree
k andj and inference rules.

2. Forward deduction part: it repeats following process
until it deduces no new theorems.

(a) Matching part: it searches and picks up a pre-
viously deduced theorem to apply an inference
rule.
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Figure 1. The model of parallelization version
of EnCal.

(b) Deduction part: it applies the inference rule to
the picked up theorem at “Matching part”. At
present, the inference rule is Modus Ponens only.
Modus Ponens is that “B” is deduced from “A ⇒
B” and “A”.

(c) Checking part: it checks all previously deduced
theorems and a deduced theorem at “Deduction
part” in order to check whether the deduced the-
orem is new or redundant.

(d) Adding part: it adds a new theorem to premises
if the degree of new theorem isnth degree (1 ≤
n ≤ k).

3. Outputting part: it outputs deduced new theorems to
file.

EnCal takes a large time when it deduces a large amount
of theorem schemata. For example, when the number of
deduced theorem schemata is 3,595,264, it took 522 hours
on Sun Enterprise 6000. The great portion of the execu-
tion time is spent at “Checking part”. Since an theorem
schema substitute pattern variable of other theorem schema,
the number of form of the theorem schema is infinite. Sym-
bolic manipulation to transform a theorem schema to a con-
densed form, and to compare deduced theorem with previ-
ously deduced theorems is needed to detect redundant the-
orem. condensed formmeans a form whose other abbre-
viated form does not exist. We call this symbolic manipu-
lation “detection of redundant theorem schemata”, DR for
short. DR is very high-frequency process in EnCal. The
frequency of DR has a great influence on the execution time
of EnCal.
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Figure 2. Including the redundant theorems
ratio.

2.2. A parallelization version of EnCal

We have implemented a parallelization version of EnCal
based on the master-slave model on a shared-memory par-
allel computer in order to improving performance of EnCal
[5]. This model is shown in Fig. 1.

1. Initialization part: it takes in premises, limit of degree
k andj and inference rules.

2. Master part: This part changes “Slave part” after di-
viding premises to “Slave parts”.

3. Slave part: The following processing are repeated in-
dependently of other “Slave part”.

(a) Matching part: it searches and picks up a pre-
viously deduced theorem to apply an inference
rule.

(b) Deduction part: it applies the inference rule to
the picked up theorem at “Matching part”. At
present, the inference rule is Modus Ponens only.

(c) Checking part: it checks all previously deduced
theorems and the deduced theorem at “Deduction
part” in order to check whether deduced theorem
is new or redundant.

(d) Adding part: it adds a new theorem to premises
if the degree of new theorem isnth degree (1 ≤
n ≤ k).

4. Checking between slaves part: it checks deduced theo-
rems which are not reduced “Checking part” at “Slave
part”.

5. Outputting part: it outputs deduced new theorems to
file.

It is necessary for efficient detection of redundant theorems
to be able to access all previously deduced theorems. How-
ever, the set of deduced intermediates at a “Slave part” is not
referred by other “Slave parts”. The parallelization version
of EnCal needs “Checking part between slaves”.

In our experiment, the parallelization version of EnCal
achieved speed-up ratio of about 12 times on 16 proces-
sor’s shared-memory parallel computer. However, we faced
a problem that the number of redundant theorems increases
in proportion to the increase of the number of processors.
Fig. 2 shows that the including redundant theorems ratio
depends on the number of processors. “Including redundant
theorems ratio” is the number of redundant theorems in fi-
nally deduced theorems is divided by the number of finally
deduced theorems. If “Including redundant theorems ratio”
is 0 percent, then there are no redundant intermediates in
finally deduced theorems. In Fig. 2, “Ten 3rd degree (252)”
means that 252 core theorems (“core theorems” means that
finally deduced theorems do not include redundant theo-
rems) are deduced from axioms of the relevant logic sys-
tem T with entailment and negation. “CMLen 3rd degree
(10649)” means that 10649 core theorems are deduced from
axioms of classical mathematical logic with entailment and
negation. “Te 4th degree (10046)” means that 10046 core
theorems are deduced from the axioms of relevant logic sys-
tem T with entailment. “Ee 4th degree (15519)”, “Re 4th
degree (35027)” and so on.

3. A new algorithm to detect redundant inter-
mediates

In order to solve the problem mentioned in Section 2, we
investigate why the number of redundant theorems increase
in proportion to the increase of the number of processors.

The reason is that the method to detect redundant theo-
rems is inefficient in“Checking part” and “Checking part
between slaves”. By comparing the deduced theorem
at “Deduction part” with previously deduced theorems,it
judges whether the deduced theorem is a new theorem. The
algorithm of “Checking part” is as follows. Here, REFER
denotes the set of previously deduced theorems and TAR-
GET denotes a deduced theorem at “Detection part”.

Checking(REFER, TARGET)
1 R ← a theorem∈ REFER
2 while R 6= NIL
3 do if DR(R, TARGET) = “TARGET is redundant”
4 then return “TARGET is redundant”
5 elseR ← a theorem∈ REFER
6 return “TARGET is new”

Checking(REFER, TARGET) returns “TARGET is
new” or “TARGET is redundant”.
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Figure 3. Represent by tree structure.

Table 1. Checking node matrix.
kind of B nodes

⇒ ∧ ∨ ¬ variable
kind of ⇒ α β β β γ

A ∧ β α β β γ
nodes ∨ β β α β γ

¬ β β β α γ
variable δ δ δ δ ε

DR(R, T ) denotes a function to transform a theorem
schemata to condensed form and to compare deduced theo-
rem with a previously deduced theorem. We represent that
⇒, ∧ and∨ are node of binary tree,¬ is node of list, and
argument of theorem is label of these tree. For example,
“(A ⇒ A) ⇒ (B ⇒ B)” and “(a ⇒ a) ⇒ (¬a ⇒ ¬a)”
represent like Fig. 3. If there are theoremA and theorem
B, DR(R, T ) returns “B is new” or “B is redundant”. The
algorithm ofDR(R, T ) as follows.R is a pointer of node
in theoremA. T is a pointer of node in theoremB.

DR(R, T )
1 if instance of R is a pattern variable.
2 then if bind(R, T ) = SUCCESS
3 then return “B is redundant”
4 else return “B is new”
5 else if instance ofR = instance ofT
6 then R

′ ← a pointer of left node ofR
7 T

′ ← a pointer of left node ofT
8 if DR(R

′
, T

′
) = “B is new”

9 then return “B is new”
10 elseR

′ ← a pointer of right node ofR
11 T

′ ← a pointer of right node ofT
12 if DR(R

′
, T

′
) = “B is new”

13 then return “B is new”
14 else return “B is redundant”
15 else return “B is new”

bind(A, B) is function to judge consistency of mapping
sub-theorem to a pattern variable.A is a pattern variable,
B is a pointer of root in a sub-theorem.bm[] is array that
stored sub-theorem of whichB is root. The index ofbm[]
corresponds to the kind of pattern variable. The algorithm

of bind(A,B) as follows.

bind(A,B)
1 if bm[A] = NIL
2 then bm[A] ← a sub-theorem of whichB is root
3 return SUCCESS
4 else ifbm[A] = a sub-theorem of whichB is root
5 then return SUCCESS
6 else returnFAILURE

In “Checking part” and “Checking between slaves part”,
DR is applied only one time to previously deduced theo-
rems each time a theorem is deduced at “Deduction part”.
There areA and A

′
which is redundant ofA. If A was

deduced earlier thanA
′
, A

′
is detected as a redundant the-

orem by DR. IfA
′

is deduced earlier thanA, A
′

is never
detected by DR. In forward entailment calculus, it is not al-
ways that a theorem which is a condensed form is deduced
earlier than redundant theorems. Hence, the processing in
“Checking part” and “Checking between slaves part” has
possibilities not to detect redundant theorems. In order to
solve the problem not to detect redundant theorems, DR is
applied only two time to previously deduced theorems each
time a theorem is deduced at “Deduction part”. Since the
frequency of DR has a great influence on the execution time
of EnCal, the increase of the frequency of DR is wrong with
improving the performance of EnCal. Thus we propose a
new algorithm of DR which focus on structure of entail-
ment in order to solve the problem not to detect redundant
theorems. The execution time of the implementation based
on the new algorithm is shorter than the execution time to
do old DR twice. A new algorithm of DR is as follows.R
is a pointer of node in theoremA. T is a pointer of node in
theoremB.

new-DR(R, T, state)
1 arg ← pair(R, T )
2 if arg = α
3 then R

′ ← a pointer of left node ofR
4 T

′ ← a pointer of left node ofT
5 if (state ← DR(R

′
, T

′
, state)) = “B is new”

6 then return “B is new”
7 elseR

′ ← a pointer of right node ofR
8 T

′ ← a pointer of right node ofT
9 if (state ← DR(R

′
, T

′
, state)) = “B is new”

10 then return “B is new”
11 return state
12 elsif arg = β
13 return “B is new”
14 elsif arg = γ
15 then if state = “Both theorem are same”
16 then state ← “A is redundant”
17 elsif state = “B is redundant”
18 then return “B is new”
19 if bind(T, R) = FAILURE
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Table 2. The number of redundant theorems in finally deduced theorems.
Number of redundant theorems

Number of processors CMLen (3) Re (4)
Old New Old New

1 processors 1159 0 6253 0
2 processors 8227 0 22542 0
4 processors 16920 0 38899 0
8 processors 24250 0 52883 0
16 processors 28894 0 69434 0

20 then return “B is new”
21 else returnstate
22 elsif arg = δ
23 then if state = “Both theorem are same”
24 then state ← “B is redundant”
25 elsif state = “A is redundant”
26 then return “B is new”
27 if bind(R, T ) = FAILURE
28 then return “B is new”
30 else returnstate
31 else ifstate 6= “A is redundant”
32 then if bind(R, T ) = FAILURE
33 then return “B is new”
34 if state 6= “B is redundant”
35 then if bind(T,R) = FAILURE
36 then return “B is new”
37 return state

pair(R, T ) is a function that gives back return value on
the based on table 1.state is a relation of two theorems.
If there are theoremA and theoremB, then relation be-
tween theoremA and theoremB is one of the four states;
both theorems are same,B is a redundant theorem ofA,
A is a redundant theorem ofB. B is different fromA.
DR(R, T, state) returns one of the four states. If a theo-
rem which is a condensed form is deduced earlier than re-
dundant theorems, new DR can detect those redundant the-
orems. Although the frequency of processing DR is same,
the new DR can detect redundant theorems which old DR
cannot detect.

4. Results and Discussion

We have implemented a parallelization version of EnCal
based on the new algorithm with C and Open MP [7, 8]
on the Sun Enterprise 6000 (16 processors). We also com-
pared the performance of the parallelization version of En-
Cal based on the new algorithm, new implementation for
short, with the old parallelization version of EnCal, old im-
plementation for short. The old implementation has “Last

Checking part” before “Outputting part”. “Last Checking
part” is to detect and reduce redundant theorems which
are not reduced at “Checking part” and “Checking between
slaves part”.

Table 2 shows the number of redundant theorems in fi-
nally deduced theorems. In table 2, “CMLen (3)” denotes
that premises are CMLen and limit of degree is 3rd, “Re
(4)” denotes that premises are Re and limit of degree is 4th.
“Old” means the old implementation. “New” means the
new implementation. “Number of processors” means the
number of used processors to deduced theorems. “Number
of redundant theorems” means the number of redundant in-
termediates which are detected and reduced at “Last Check-
ing part”.

Table 3 shows the execution time of both paralleliza-
tion versions of EnCal on 16 processors. “Execution time
before Last Checking part” denotes the execution time to
complete all deduction. “Execution time at Last Check-
ing part” denotes the execution time of processing “Last
Checking part”. “Execution time (total)” denotes the exe-
cution time of processing from “Initialization part” to “Last
Checking part”. The execution time before “Last Checking
part” shows that the execution time of the new implemen-
tation is about 1.1 times as slow as the old one. However,
the execution time at “Last Checking part” of the new im-
plementation is zero. It is not necessary for the new imple-
mentation to set “Last Checking part”, because there are no
redundant intermediates in finally deduced theorems. Thus
total execution time of the new implementation is faster than
the old one.

Our experimental result shows us three things. First, the
new algorithm is effective to detect and reduce redundant
theorems. Second, the execution time of new implemen-
tation is shorter than twice processing DR. Third, we can
get the deduced theorems which are no including redundant
theorems in short time than old one. Thus, without caring
about the increase of the number of redundant theorems, we
can get the high speed-up ratio by increase of the number of
processors.
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Table 3. The execution time (used 16 processors) [second].
Premises (the number of degree)

CMLen (3) Te (4) Ee (4) Re (4)

Execution time Old 1058 323 1155 7903
before “Last Checking part” New 1165 373 1271 8224

Execution time Old 317 488 1129 6062
at “Last Checking part” New 0 0 0 0

Execution time Old 1377 804 2273 13974
(total) New 1165 373 1271 8224

5. Concluding remarks

We have proposed a new algorithm to detect and re-
duce redundant intermediates in order to solve the prob-
lem that the number of redundant intermediates increases
in proportion to the increase of the number of processors.
We have implemented EnCal based on the new algorithm
on a shared-memory parallel computer and our experiment
showed this algorithm is effective. Therefore, we can get
the high speed-up ratio, free from worry about the increase
of the number of redundant intermediates, by increase of
the number of processors.

A forward deduction system to deal with theorem
schemata needs some specific method to detect redundant
intermediates. Since a redundant intermediate is not al-
ways deduced earlier than a condensed form of the redun-
dant intermediate, the method to detect redundant interme-
diate instances is not enough to detect redundant interme-
diate schemata. Our algorithm to detect redundant inter-
mediate schemata is to focus on the structure of entailment
formulas. Therefore, this algorithm is effective for not only
improving performance of EnCal, but also other automated
forward deduction system based on entailment calculus.
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