
Efficient Anticipatory Reasoning for Anticipatory

Systems with Requirements of High Reliability

and High Security

Yuichi Goto, Shinsuke Nara, and Jingde Cheng
Department of Information and Computer Sciences, Saitama University

Saitama, 338-8570, Japan
{gotoh, nara, cheng}@aise.ics.saitama-u.ac.jp

Abstract A practical anticipatory system with requirements of high reliability and
high security must be able to perform any anticipatory reasoning to get enough
effective conclusions anticipatorily within an acceptable time in order to satisfy
the requirements from applications. This is a contradictory requirement since the
execution time of anticipatory reasoning gets longer in proportion to the amount
increasement of deduced conclusions. We are developing a forward deduction system
for general-purpose entailment calculus, named EnCal. Although EnCal is a forward
deduction engine for general-purpose entailment calculus, we expect that it can serve
as the forward deduction engine in an anticipatory system to perform anticipatory
reasoning based on temporal relevant logics. The key issue to achieve this goal is
the efficiency of EnCal. This paper presents results and their implications of our
experiences on improving the efficiency of EnCal by parallel processing techniques.
Keywords : Highly reliable systems, Highly secure systems, Anticipation, Antici-
patory reasoning, Forward deduction for entailment calculus, Parallel processing.

1 Introduction

Reasoning is the process of drawing new conclusions from given premises, which
are already known facts or previously assumed hypotheses. An anticipatory reason-
ing is a reasoning to draw new, previously unknown and/or unrecognized conclusions
about some future event or events whose occurrence and truth are uncertain at the
point of time when the reasoning is being performed. Obviously, any anticipatory
reasoning must be forward rather than backward. From the philosophical viewpoint,
the notion of anticipation itself is intrinsically time dependent. The earlier an antic-
ipatory reasoning draws conclusions, or the farther the future event is predicted by
an anticipatory reasoning, the higher is its degree of anticipation. To be a computing
system useful in various applications in the real world, an anticipatory system must
have the ability of anticipatory reasoning with some certain degree of anticipation
to predict the occurrence and truth of some future event or events.

International Journal of Computing Anticipatory Systems, Volume 14, 2004
Edited by D. M. Dubois, CHAOS, L̀ıege, Belgium, ISSN 1373-5411 ISBN 2-930396-00-8

On the other hand, from the viewpoints of software reliability engineering and
information security engineering, a practical anticipatory system must be able to
perform any anticipatory reasoning to get enough effective conclusions anticipatorily
within an acceptable time in order to satisfy the requirements of high reliability
and high security from applications. Since the most intrinsic characteristic of an
anticipatory system is its ability of taking anticipation, an anticipatory system that
cannot satisfy the requirements of anticipation and timeliness is useless at all in
practices in the real world. Therefore, for an anticipatory system with requirements
of high reliability and high security, its functioning is both anticipation-critical and
time-critical.

Thus, we face a dilemma. On the one hand, as a forward reasoning, an antici-
patory reasoning has to deal with a lot of intermediates, which are usually involved
in any forward reasoning, in order to get effective conclusions anticipatorily. On the
other hand, an anticipatory reasoning has to be performed as efficiently as possible
in order to keep a high degree of anticipation.

We are developing a forward deduction system for general-purpose entailment
calculus, named EnCal. Although EnCal is a forward deduction engine for general-
purpose entailment calculus, we expect that it can serve as the forward deduction
engine in an anticipatory system to perform anticipatory reasoning based on tempo-
ral relevant logics [7]. The key issue to achieve this goal is the efficiency of EnCal.
This paper presents results and their implications of our experiences on improving
the efficiency of EnCal by parallel processing techniques.

The rest of this paper is organized as follows: Section 2 explains the position of
our research. Section 3 gives an analysis for execution time of a forward deduction
engine for anticipatory reasoning. Section 4 gives some explanations about EnCal
and presents a model of its parallelization version in order to show a case study of
improving the performance of a forward deduction engine for anticipatory reasoning
by parallel processing. Section 5 shows our implementation of the parallelization
version of EnCal and our experiments on a shared-memory parallel computer and
clusters of PCs. Section 6 discusses our experimental results. Some concluding
remarks are given in Section 7.

2 Forward deduction engine for anticipatory reasoning

The concept of an anticipatory system first proposed by Rosen in 1980s [16].
Rosen considered that “an anticipatory system is one in which present change of
state depends upon future circumstance, rather than merely on the present or past”
and defined an anticipatory system as “a system containing a predictive model
of itself and/or its environment, which allows it to change state at an instant in
accord with the model’s prediction to a latter instant.” [16] Until now, philosophical
discussions on anticipatory systems and their characteristics are still being continued
by scientists from various disciplines [8, 9, 10, 12, 13].

157

On the other hand, from the viewpoints of software reliability engineering and
information security engineering, what we need is really useful systems with an-
ticipatorily predictive capability to take anticipation for forestalling disasters and
attacks rather than the philosophical definition and intension of an anticipatory
system. In order to develop anticipatory systems useful in the real world, we has
proposed a new type of reactive systems, named “Anticipatory Reasoning-Reacting
Systems,” as a certain class of anticipatory systems [5].

An anticipatory reasoning-reacting system (ARRS for short) is a computing sys-
tem containing a controller C with capabilities to measure and monitor the behavior
of the whole system, a traditional reactive system RS, a predictive model PM of RS
and its external computing environment, and an anticipatory reasoning engine ARE
such that according to predictions by ARE based on PM, C can order and control
RS to carry out some operations with a high priority [5]. In this paper, we discuss
about anticipatory reasoning engine ARE.

An ARE must be a forward deduction engine. Reasoning can be classified into
forward reasoning and backward reasoning. Forward reasoning is to infer new con-
clusions from known facts or assumed hypotheses. Backward reasoning is to find
out the path which is from known facts or hypotheses to given goal or sub-goal.
Anticipatory reasoning is forward rather than backward because when we perform
an anticipatory reasoning we cannot know some future event or events, whose occur-
rence and truth are uncertain at the time point of the reasoning is being performed,
as a goal or sub-goal. Reasoning can be classified into three forms, deduction, induc-
tion and abduction. Deduction is the process of deducing or drawing a conclusion
from some general principles already known or assumed. Induction is the process
of inferring some general laws or principles from the observation of particular in-
stances. Abduction is the process whereby a surprising fact is made explicable by
the application to it of a suitable proposition. For an ARRS, the conclusions de-
duced by the ARE must be definitely correct if the premises are correct. This can
be guaranteed by only deduction. Therefore, an ARE must be a forward deduction
engine.

3 Computational complexity of forward deduction for an-
ticipatory reasoning

A forward deduction engine for anticipatory reasoning, as well as other forward
deduction engines, has a difficult problem that its execution time gets longer in pro-
portion to the increasement of deduced conclusions. In general, a forward deduction
engine performs the following four processes repeatedly for each inference rule, in
order to get new conclusions, until some termination conditions are satisfied.

1. Matching process: it seeks and picks up some premises, which are to be applied
to an inference rule, from a set of premises. Then it matches the premises to
an inference rule.

158

2. Deduction process: it applies an inference rule to the premises which were
matched at the matching process.

3. Duplication checking process: it compares a conclusion which was deduced at
the deduction process with all previously deduced conclusions and premises in
order to check whether it is a duplicate or not.

4. Adding process: it adds the conclusion which was judged to be new at the
duplication checking process to the set of premises.

We present some equations about the execution time and the amount of data
of a forward deduction engine if all inference rules apply to all given premises. Let
n be the number of previously given premises, I be the number of inference rules,
r be the number of premises required by an inference rule, in this assumption all
inference rules require r premises, and τm be the execution time of judging whether a
inference rule can apply to some premises or not and matching the inference rule to
the premises at the matching process. The execution time at the matching process
is

nr · I · τm. (1)

Let τd be the execution time of deducing a conclusion. The execution time at the
deduction process is at most

nr · I · τd. (2)

Let τc be the execution time of comparing a deduced conclusion at the deduction
process with a previously deduced conclusion or a given premise at the duplication
checking process. The execution time at the duplication checking process is at most

n · I · τc + (1 · τc + 2 · τc + . . . + (I · nr − 1) · τc)

= (n · I +
I·nr−1∑

k=1

k) · τc

=
1

2
{I2(nr − 1)2 + I(nr + 2n − 1)} · τc. (3)

In this assumption, the total execution time of above three process is

nr · I · (τm + τd) +
1

2
{I2(nr − 1)2 + I(nr + 2n − 1)} · τc

≈ O(I2 · n2r). (4)

On the other hand, the number of deduced conclusions in forward deduction is
huge. In this assumption, the number of deduced conclusions is at most

I · nr. (5)

159

In the adding process, deduced new conclusions are added into a set of premises.
Then processing of forward deduction is again repeated using the conclusions as
premises. Thus, even the number of premises is few, the number of deduced conclu-
sions become large easily. We therefore can regard the execution time of a forward
deduction engine as O(N2r), where N denotes the number of data which includes
both finally deduced conclusions and given premises, because the number of data is
rather large than the number of given inference rules.

A useful forward deduction engine must get enough effective conclusions in an
acceptable time. This is especially true to a forward deduction engine for anticipa-
tory reasoning. Thus this problem must be solved in order to implement an efficient
forward deduction engine as an anticipatory reasoning engine. The efficiency of a
forward deduction engine can be improved by two aspects. One is shortening the
execution time of each process in a forward deduction engine. Another is reducing
the processing load. The first aspect focuses on the execution time of each process,
i.e., shortening τm, τd and τc. It is expected that it can shorten the execution time
of a forward deduction engine at a constant rate without the increasement in the
number of deduced conclusions and given premises. The second aspect is focuses on
the processing load: the order of the execution time become less than O(N2r) where
N is the number of deduced conclusions and given premises and r is the number
of premises required by an inference rule. This aspect can be classified into two
approaches. One is to narrow down the range of data being processed. As at a
certain time, all data is not necessarily performed on a certain process of a forward
deduction engine. It is also expected that this approach can shorten the execution
time at a constant rate without the increasement in the number of deduced conclu-
sions and given premises. Other is reducing the processing load on one processor
by parallel processing. It is expected that this approach can shorten the execution
time in proportion to the number of using processors.

In this paper, we focus on reducing the processing load on one processor by
parallel processing. This approach is flexible to the increasement in the number of
deduced conclusions and given premises since it can increase the number of proces-
sors. In following sections, we present a case study of improving the performance
of an automated forward deduction system for general-purpose entailment calculus,
named EnCal, as an anticipatory reasoning engine with parallel processing.

4 The case study of EnCal

We are developing an automated forward deduction system for general-purpose
entailment calculus, named EnCal [4]. Although EnCal is a forward deduction en-
gine for general-purpose entailment calculus, we expect that it can serve as the
forward reasoning engine to perform anticipatory reasoning based on temporal rel-
evant logics in an anticipatory system [7].

160

4.1 Forward deduction for entailment calculus

An entailment calculi is a formalization of a logical system L such that the
notion of conditional (entailment) is represented in L by a primitive connective and
all logical theorems of L are represented in the form of entailment.

In logic, a sentence in the form of “if . . . then . . .” is usually called a conditional
proposition or simply conditional. A conditional must concern two parts which are
connected by the connective “if . . . then . . .” and called the antecedent and the
consequent of that conditional. The truth of a conditional depends not only on the
truth of its antecedent and consequent but also, and more essentially, on a necessarily
relevant and/or conditional relation between its antecedent and consequent.

When we study and use logic, the notion of conditional may appear in both
the object logic (i.e., the logic we are studying) and the meta-logic (i.e., the logic
we are using to study the object logic). From the viewpoint of the object logic,
there are two classes of conditionals. One class is empirical conditionals and the
other class is logical conditionals. In the sense of logic, an empirical conditional
is that its truth-value is depend on the contents of its antecedent and consequent.
Therefore the truth-value of an empirical conditional cannot be determined only by
its abstract form. A logical conditional is that its truth-value is universally true or
false and therefore can be determined by its abstract form. A logical conditional
that is considered to be universally true, in the sense of that logic, is also called
entailment of that logic [1, 2, 6].

A formal logic system L consists of a formal language, called the object language
and denoted by F (L), which is the set of all well-formed formulas of L, and a logical
consequence relation, denoted by meta-linguistic symbol `L, such that P ⊆ F (L)
and c ∈ F (L), P `L c means that within the frame work of L, c is valid conclusion
of premises P , i.e., c validly follows from P . For a formal logic system (F (L), `L),
a logical theorem t is a formula of L such that φ `L t where φ is empty set. We use
Th(L) to denote the set of all logical theorems of L.

Let (F (L), `L) be a formal logic system and P ⊆ F (L) be a non-empty set
of sentences (i.e., closed well-formed formulas). A formal theory with premises P
based on L, called a L-theory with premises P and denoted by TL(P), is defined as
TL(P) =df Th(L) ∪ The

L(P), and The
L(P) =df {et|P `L et and et 6∈ Th(L)} where

Th(L) and The
L(P) are called the logical part and the empirical part of the formal

theory, respectively, and any element of The
L(P) is called an empirical theorem of

the formal theory.
For a formal logic system where the notion of conditional is represented by prim-

itive connective entailment “⇒”, a formula is called a zero degree formula if and
only if there is no occurrence of “⇒” in it; a formula of the form “A ⇒ B” is called
a first degree conditional if and only if both A and B are zero degree formula; a
formula A is called a first degree formula if and only if it satisfies one of the following
conditions:

1. A is a first degree conditional,

161

2. A is in the form +B (+ is a one-place connective such as negation and so on)
where B is a first degree formula,

3. A is in the form B ∗C, (∗ is a non-implicational two-place connective such as
conjunction or disjunction and so on), where both of B and C is a first degree
formulas, or one of B and C are a first degree formula and the another is a
zero degree formula.

Let k be a natural number. A formula of the form “A ⇒ B” is called a kth

degree conditional if and only if both A and B are (k−1)th degree formulas, or either
formula A or B is a (k − 1)th degree formula and the another is a jth(j < k − 1)
degree formula; a formula is called kth degree formula if and only if it satisfies one
of the following conditions:

1. A is a kth degree conditional,

2. A is in the form +B (+ is a one-place connective such as negation and so on)
where B is a kth degree formula,

3. A is in the form B ∗C, (∗ is a non-implicational two-place connective such as
conjunction or disjunction and so on), where both of B and C is a kth degree
formulas, or one of B and C are a kth degree formula and the another is a
jth(j < k) degree formula.

Let (F (L), `L) be a formal logic system and k be a natural number. The kth

degree fragment of L, denoted by Thk(L), is a set of logical theorems of L that is
inductively defined as follows (in the terms of Hilbert-style formal systems):

1. if A is a jth(j ≤ k) degree formula and an axiom of L, then A ∈ Thk(L),

2. if A is a jth(j ≤ k) degree formula that is the result of applying an inference
rule of L to some members of Thk(L), then A ∈ Thk(L),

3. nothing else is a member of Thk(L), i.e., only those obtained from repeated
applications of 1. and 2. are members of Thk(L).

Let (F (L), `L) be a formal logic system, P ⊂ F (L), and k and j be two natural
numbers. A formula A is said to be jth-degree-deducible from P based on Thk(L) if
and only if there is an finite sequence of formulas f1, . . . , fn such that fn = A and for
all i(i ≤ n) (1) fi ∈ Thk(L), or (2) fi ∈ P , or (3) fi whose degree is not higher than j
is the result of applying an inference rule to some members fj1 , . . . , fjm(j1, . . . , jm <
i) of the sequence. If P 6= φ, then the set of all formulas which are jth-degree-
deducible from P based on Thk(L) is called the jth degree fragment of the formal
theory with premises P based on Thk(L), denoted by T j

Thk(L)(P) [6].
Automated forward deduction is a process of deducing new and unknown conclu-

sions automatically by applying inference rules to premises and previously deduced
conclusions repeatedly until some previously specified condition is satisfied.

162

4.2 EnCal

EnCal supports an automated forward deduction for entailment calculi based
on strong relevant logics as well as other logics [4]. It provides its users with the
following major facilities. For a formal logic system L which may be a propositional
logic, a first-order predicate logic, or a second-order predicate logic, a non-empty set
P of formulas as premises, inference rules of logic system L and natural number k
and j (usually, k, j ≤ 5) as limit of degree which is the degree of nested entailment
(denoted by “⇒” in this paper), all specified by the user, EnCal can

1. reason out all logical theorem schemata of the Thk(L),

2. verify whether or not a formula is a logical theorem schema of the Thk(L), if
yes, then give the proof,

3. reason out all empirical theorems of the jth degree fragment of L-theory with
premises P based on Thk(L),

4. verify whether or not a formula is an empirical theorem of the jth degree
fragment of L-theory with premises P based on Thk(L), if yes, then give the
proof [4].

In this paper, we focus on the function that reasons out all logical theorem
schemata, LTSs for short, of the kth degree fragment of a propositional logic since
it is most basic function of EnCal.

An automated forward deduction by EnCal consists of 3 parts as follows.

1. Initialization: it takes in premises, limits of degree k and j and inference rules.

2. Forward deduction: about each inference rule, it repeats following processes
until it deduces no new LTSs.

(a) Matching process: it seeks and picks up some LTSs from a set of pre-
viously deduced LTSs or premises to apply an inference rule. Then it
matches the LTS to the inference rule.

(b) Deduction process: it applies the inference rule to the LTSs which were
matched at the matching process.

(c) Duplication checking process: it compares a conclusion which was de-
duced at the deduction process with all previously deduced LTSs in order
to check whether it is duplicate or not.

(d) Adding process: it adds the conclusion which was judged to be new at
the duplication checking process as new LTS to the set of premises if the
its degree of nest of entailment is lth degree (1 ≤ l ≤ k).

3. Outputting: it outputs all deduced LTSs to a file.

At present, the inference rule of EnCal is Modus Ponens only. Modus Ponens is that
B is deduced from A ⇒ B and A.

163

4.3 Computational complexity analysis

The each process in the forward deduction part is depends on the result of
previous process prior to it.

The forward deduction algorithm in EnCal is as follows. Let n be the number of
previously deduced LTSs and given premises, and {P} = {P0, P1, . . . , Pn−1} be the
set of premises and previously deduced LTSs.

Algorithm 1 Forward deduction

1. n ← the number of premises.

2. p ← 0

3. k ← the limit of degree.

4. do

5. n
′ ← n

6. for (i ← 0, i < n, i ← i + 1)

7. for (j ← p, j < n, j ← j + 1)

8. Matching(Pi,Pj):
If it can apply Modus Ponens to between Pi and Pj, return SUCCESS.
If no, return FAILURE.

9. if Matching(Pi,Pj) returns SUCCESS

10. then Deduction(Pi,Pj):
it applies Modus Ponens to Pi and Pj.

11. Duplication check(C):
If a conclusion C which was deduced at Deduction(Pi,Pj) is
duplicate, return DUPLICATE. If no, return NEW.

12. if Duplication check(C) returns NEW

13. then Adding(C):
it adds an a conclusion C into {P} if the degree of C is smaller
than k. After that n′ ← n

′
+ 1.

14. for (i ← p, i < n, i ← i + 1)

15. for (j ← 0, j < p, j ← j + 1)

16. Matching(Pi,Pj)

17. if Matching(Pi,Pj) returns SUCCESS

18. then Deduction(Pi,Pj)

19. Duplication check(C)

20. if Duplication check(C) returns NEW

21. then Adding(C)

22. p ← n

23. n ← n
′

24. while (new LTSs are deduced).

164

The algorithm of Duplication check(C) is as follows. Let Comp(A,B) be a func-
tion which compares A with B to judge whether B is duplicate of A. If B is
duplicate, then Comp(A,B) returns DUPLICATE.

Algorithm 2 Duplication check(C)

1. for (i ← 0, i < n, i ← i + 1)
2. Comp(Pi,C):

C is a conclusion which was deduced at Deduction process.
3. if Comp(Pi,C) returns DUPLICATE
4. then return DUPLICATE
5. return NEW.

The major portion of the execution time of EnCal is spent at the duplication
checking process. Let N be the number of given premises and new LTSs which
are deduced finally. The number of premises required by Modus Ponens is two.
The number of times of processing Matching(A,B) is N2. The number of times of
processing Duplication check(A) is at most N2 and at least N , since the number of
deduced conclusions and intermediates is at most N2 and at least N . The number
of times of processing Comp(A,B) is at most

N2−1∑

k=1

k =
{N2(N2 − 1)}

2
, (6)

and at least

N−1∑

k=1

k =
{N(N − 1)}

2
. (7)

Thus the calculated amount of EnCal approaches at most O(N4) and at least O(N2).
EnCal also has a problem that its execution time gets longer in proportion to the
amount increasement of deduced conclusions.

4.4 Parallel version of EnCal

We summarize the processing features of EnCal.

1. The each process in the forward deduction part depend on the results of pre-
vious process prior to it.

2. Previously deduced LTSs are accessed frequently at the matching process and
the duplication checking process.

3. The number of times of processing Matching(A,B) is at most N2, where N is
the number of finally deduced LTSs and given premises.

4. The number of times of processing Comp(A,B) is at most {N2(N2 − 1)}/2
and at least {N(N − 1)}/2.

165

Matching process

Deduction process

Duplication checking process

Adding process

Is there any
 premises?

Failure

Limit of degree

Redundant

Success

New

Yes

No

Success

Dividing premises

Is there new
 theorem schemata?

S
la

ve

Duplication checking among slaves process

Outputting part

Initialization part

Yes

No

S
la

ve

S
la

ve

S
la

ve

Fig. 1: The model of parallelization version of EnCal

We design the parallelization version of EnCal based on master-slave model.
Master-slave model based on agenda parallelism paradigm [3] is a suitable model
for parallelization version of EnCal because of above features 1, 3 and 4. Figure 1
shows the model of parallelization version of EnCal. The model consists of following
parts where the initialization part, the matching process, the deduction process, the
duplication checking process, the adding process and the outputting part are same
one of the sequential version of EnCal.

1. Initialization.

2. Forward deduction: about each inference rule, it repeats following processes
until it deduces no new LTSs.

(a) Master: it changes a slave part after dividing premises to other slaves.

(b) Slave: the following processes are repeated independently of other slaves.

i. Matching process.
ii. Deduction process.
iii. Duplication checking process.

(c) Duplication checking among slaves process: it detects and reduces the
duplicate which is not detected at the duplication checking process in
Slave part.

(d) Adding process.

3. Outputting.

166

It is necessary for efficient duplication check to be able to access all previously
deduced LTSs. However, the set of deduced conclusions at a slave is not referred
by other slaves. The parallelization of EnCal needs the duplication checking among
slaves part.

On this parallelization of EnCal, let p be the number of processors, and N be
the number of given premises and new LTSs which are deduced finally. If deduced
conclusions or intermediates are evenly deduced on each slave, the number of times
of processing Comp(A,B) at the duplication check process on one slave is at most

∑N2−1
k=1 k

p
=

{N2(N2 − 1)}
2p

, (8)

and at least
∑N−1

k=1 k

p
=

{N(N − 1)}
2p

. (9)

The number of times of processing Comp(A,B) at the duplication checking among
slaves process is at most

p ·
N2/p−1∑

k=1

k =
{N2(N2 − p)}

2p
, (10)

and at least

p ·
N/p−1∑

k=1

k =
{N(N − p)}

2p
. (11)

Thus the theoretical speed up ratio is approximated as follows,

Speed up ratio ≈
{N2(N2−1)}

2p
+ {N2(N2−p)}

2p

{N2(N2−1)}
2 (at most)

(12)

≈
{N(N−1)}

2p
+ {N(N−p)}

2p

{N(N−1)}
2 (at least)

≈ 2

p

In the parallelization version of EnCal based on master-slave model, its theoret-
ical value shows that the processing load on one processor decreases in proportion
to the increasement in used processors.

167

Table 1: The execution time on Sun Enterprise 6000 (sec)

Logic systems 1 processor 2 processors 4 processors 8 processors 16 processors

Te(4) 3499 1641 922 562 381
Ee(4) 12347 6100 3370 2021 1290
Re(4) 85962 41146 21825 12668 8236

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12 14 16

S
pe

ed
-u

p
ra

tio
 (t

im
es

)

The number of processors

Te 4th degree fragment

Ee 4th degree fragment

Re 4th degree fragment

 1

Fig. 2: Speed-up ratio on Sun Enterprise 6000

5 Implementation and Results

We have implemented the parallelization version of EnCal based on master-
slave model on a shared-memory parallel computer and a cluster of PCs, and got the
execution time of deducing 4th degree fragment from axioms of some logic systems,
in order to investigate the effectiveness of its model.

We have implemented the parallelization version of EnCal with C and OpenMP
[14, 15] on the Sun Enterprise 6000 (Ultra SPARC 168 MHz x 16, 4Gbyte main
memory). Table 1 shows the execution time on Sun Enterprise 6000. Te(4) denotes
the 4th degree fragment of relevant logic system T with entailment. The number
of conclusions in Te(4) is 10,649. Ee(4) denotes the 4th degree fragment of relevant
logic system E with entailment. The number of conclusions in Ee(4) is 15,519. Re(4)
denotes the 4th degree fragment of relevant logic system R with entailment. The
number of conclusions in Re(4) is 35,027. Table 1 shows that the execution time
gets shorter in proportion to the increasement in the number of processors without
depending on the number of deduced conclusions. Figure 2 shows the relation be-
tween the number of processors and the speed-up ratio against the execution time
on 1 processor. Figure 2 shows the same tendency as the theoretical value 2/p, p is
the number of processors, acquired in section 3 was shown.

We have also implemented the parallelization version of EnCal on an 8-node dual

168

Table 2: The execution time on a clusters of PCs (sec)

Logic systems 1 processor 2 processors 4 processors 8 processors 16 processors

Te(4) 1 processor / 1 node 905 497 272 157 ———–
2 processors / 1 node ———– 497 273 157 107

Ee(4) 1 processor / 1 node 4706 2413 1285 666 ———–
2 processors / 1 node ———– 2418 1287 666 406

Re(4) 1 processor / 1 node 31317 15840 8530 4620 ———–
2 processors / 1 node ———– 15860 8570 4642 2709

2

4

6

8

10

12

2 4 6 8 10 12 14 16

S
pe

ed
-u

p
ra

tio
 (t

im
es

)

Number of processors

Te 4th degree fragment

Ee 4th degree fragment

Re 4th degree fragment

Fig. 3: Speed-up ratio on a clusters of PCs (2 CPU / 1 node)

Pentium III 1GHz PC SMP cluster (i840 chipset, 1GB RDRAM main memory per
node, Linux 2.2.16). The nodes on the PC SMP cluster are interconnected through
a 100Base-TX Ethernet switch. MPICH-SCore [11] was used as a communication
library. We used an intranode MPI library for the PC SMP cluster. All routines were
written in C. Table 2 shows the execution time on the cluster of PCs. The column of
“1 processor / 1 node” is a case of deducing by 1 processor per 1 node. The column
of “2 processors / 1 node” is a case of deducing by 2 processor per 1 node. In Table
2, the execution time gets shorter in proportion to the increasement in the number
of processors without depending on the number of deduced conclusions. Figure 3
shows the relation between the number of processors and the speed-up ratio against
the execution time on 1 processor, using 2 processors per node. Figure 3 shows the
same tendency as the theoretical value 2/p, p is the number of processors, acquired
in Section 3 was shown.

Thus our experiments shows the model of the parallelization version of EnCal is
effective for improving the performance of EnCal, independent of the difference in

169

the architecture and the number of deduced conclusions.

6 Discussion

Improving the performance by parallel processing is effective for not only EnCal
but also other forward deduction engines which perform four processes repeatedly;
the processes are matching between inference rules and premises, applying inference
rules to premises, detecting and reducing the duplicate and adding new conclusions
to the set of premises. The model of the parallelization version of EnCal is only
designed to reduce the number of times of performing its four processes. It is not
considered what an inference rule or data structure EnCal uses, i.e., the model is
designed paying attention to the number of times of performing their processes,
but not the kinds and natures of their processes. Thus if the inference rule of
EnCal change from Modus Ponens into other inference rule, the execution time of
parallelization version of EnCal gets shorter in proportion to the increasement in the
number of processors. In a forward deduction system for anticipatory reasoning as
well as other forward deduction engines whose inference rules and/or data structure
are different from EnCal, the execution time of the parallelization version of it
therefore gets shorter in proportion to the increasement in the number of processors,
too.

7 Concluding remarks

A practical anticipatory system with requirements of high reliability and high
security must be able to perform any anticipatory reasoning to get enough effective
conclusions anticipatorily during an acceptable time in order to satisfy the require-
ments from applications. We have presented a model of a parallelization version of
EnCal based on master-slave model and implemented it on a shared-memory paral-
lel computer and a clusters of PCs, as a case study to investigate the effectiveness
of parallel processing for improving the performance of a forward deduction engine
for anticipatory reasoning. Our experiments have shown the the execution time on
both architectures gets shorter in proportion to the increasement in the number
of processors without depending on the number of deduced conclusions and given
premises. Hence, improving the performance by parallel processing is effective for
all forward deduction engines for anticipatory reasoning.

References

[1] Anderson Alan R. and Nuel Belnap D. Jr. (1975) Entailment: The Logic of
Relevance and Necessity, Vol. 1. Princeton University Press.

170

[2] Anderson Alan R. and Nuel Belnap D. Jr. , and J. Dunn Michael (1992) En-
tailment: The Logic of Relevance and Necessity, Vol. 2. Princeton University
Press.

[3] Carriero Nicholas and David Gelernter (1990) How to Write Parallel Programs:
A First Course. MIT Press.

[4] Cheng Jingde (1996) ‘EnCal: An Automated Forward Deduction System for
General–Purpose Entailment Calculus’. In: N. Terashima and E. Altman (eds.):
Advanced IT Tools, Proceedings of the 14th WCC, Canberra. Chapman & Hall,
pp. 507–517.

[5] Cheng Jingde (2002) ‘Anticipatory Reasoning-Reacting Systems’. In:
Proc. International Conference on Systems,Development and Self-organization
(ICSDS’2002). Beijing, China, pp. 161–165.

[6] Cheng Jingde (2002), ‘Mathematical Knowledge Representation and Reasoning
Based on Strong Relevant Logic’. In: R. Trappl (ed.): Cybernetics and Sys-
tems 2002, Proceedings of 16th European Meeting on Cybernetics and Systems
Research, Vol. II. Austrian Society for Cybernetic Studies, pp. 789–794.

[7] Cheng Jingde (2004) ‘Temporal Relevant Logic as the Logical Basis of Antici-
patory Reasoning-Reacting Systems’. In: D. M. Dubois (ed.): COMPUTING
ANTICIPATORY SYSTEMS: CASYS 2003 - Sixth International Conference.
AIP Conference Proceedings. to appear.

[8] Chirsley Ron (2002) ‘Some Foundational Issues Concerning Anticipatory Sys-
tems’. International Journal of Computing Anticipatory Systems 11, 3–18.

[9] Dubois Daniel M. (1998) ‘Introduction to Computing Anticipatory Systems’.
International Journal of Computing Anticipatory Systems 2, 3–14.

[10] Dubois Daniel M (2000) ‘Review of Incursive, Hyperincursive and Anticipatory
Systems - Foundation of Anticipation in Electromagnetism’. In: D. M. Dubois
(ed.): Computing Anticipatory Systems: CASYS’99 - Third International Con-
ference. pp. 3–30.

[11] MPICH-SCore., ‘PC Clusters Consortium’.
http://pdswww.rwcp.or.jp/home-j.html.

[12] Nadin Mihai (2000) ‘Anticipation - A Spooky Computation’. International
Journal of Computing Anticipatory Systems 6.

[13] Nadin Mihai (2000) ‘Anticipatory Computing’. Ubiquity - The ACM IT Mag-
azine and Forum 1. Issue 40.

[14] Omni., ‘RWCP OpenMP compiler project’.
http://www.hpcc.jp/Omni/.

[15] OpenMP., ‘Simple, Portable, Scalable SMP Programming’.
http://www.openmp.org/.

[16] Rosen Robert (1985) Anticipatory Systems - Philosophical, Mathematical and
Methodological Foundations. Pergamon Press.

171

