
Continuous Reactability of
Persistent Computing Systems

Yuichi Goto, Takumi Endo, and Jingde Cheng
Department of Information and Computer Sciences, Saitama University

Saitama,338-8570, Japan
{gotoh, endo, cheng}@aise.ics.saitama-u.ac.jp

Abstract
Persistent computing systems are an infrastructure of computing anticipatory systems.
The reactability of a persistent computing system, which is how many reactions of the
system are active at a certain time, is the most important property to characterize the sys-
tem. On the other hand, to be anticipatory, the reactability of a computing anticipatory
system must be continuous. This paper proposes the first method to measure the con-
tinuous reactability of a persistent computing system in a unified way. The continuous
reactability of a persistent computing system is a new concept of computing systems, so
that it will be raise new research problems of computing anticipatory systems as well as
persistent computing systems.
Keywords : Computing anticipatory system, Persistent computing system,
Component-based system, Reactability, Continuous reactability

1 Introduction

The notion of anticipatory system [12], in particular, computing anticipatory system [6, 7,
8], implies a fundamental assumption or requirement, i.e., to be anticipatory, a computing
system must behave continuously and persistently without stopping its running, because
(1) for any anticipatory system, concerning its current state, there must be a future state
referred by the current state, and (2) for any anticipatory system, its states form an infinite
sequence [5]. Cheng and Shang have showed that persistent computing systems should be
as an infrastructure of computing anticipatory systems [5]. A persistent computing system
is a reactive system that functions continuously anytime without stopping its reactions
even when it needs to be maintained, upgraded, or reconfigured, it has some trouble, or it
is attacked [2, 3, 4].

We proposed the reactability of a persistent computing system, which is how many
reactions of the system are active at a certain time, as one of the most important properties
to characterize the system [9]. The most fundamental issue towards implementation of
a persistent computing system is how to measure and maintain the reactability of the
system. However, our definition of the reactability in [9] is not appropriate because our
definition of a reaction of a persistent computing system is not appropriate.

On the other hand, to be anticipatory, the reactability of a computing anticipatory
system must be continuous. However, the requirement that a computing system should

International Journal of Computing Anticipatory Systems, Volume 20, 2008
Edited by D. M. Dubois, CHAOS, Lı̀ege, Belgium, ISSN 1373-5411 ISBN 2-930396-07-5



run continuously and persistently is never taken into account as an essential and/or general
requirement by traditional system design and development methodologies. As a result,
there is no clearly defined standard to be used for measuring the continuous reactability
of a computing system is also not clearly defined.

This paper proposes the first method to measure the continuous reactability of a per-
sistent computing system in a unified way. At first, we re-define the reactability and define
the continuous reactability of a persistent computing system. We then propose a method
to measure the continuous reactability of a persistent computing system.

The rest of this paper is organized as follows: Section 2 explains what is a persistent
computing system briefly. Section 3 presents definitions of the reactability and continuous
reactability of a persistent computing system. Section 4 presents a method to measure the
continuous reactability. Section 5 gives discussions. Some concluding remarks are given
in Section 6.

2 Persistent Computing Systems

Persistent Computing is proposed by Cheng as a new methodology that aims to develop
continuously dependable and dynamically adaptive reactive systems, called persistent
computing systems, in order to build more tough, useful, and human-friendly reactive
systems [2, 3, 4]. Conceptually, a reactive system is a computing system that maintains
an ongoing interaction with its environment, as opposed to computing some final value
on termination [10, 11]. A persistent computing system is a reactive system that functions
continuously anytime without stopping its reactions even when it is being maintained,
upgraded, or reconfigured, it had some trouble, or it is being attacked [2, 3, 4]. Persis-
tent computing systems have the two key characteristics and/or fundamental features: (1)
persistently continuous functioning, i.e., the systems can function continuously and per-
sistently without stopping its reactions, and (2) dynamically adaptive functioning, i.e., the
systems can be dynamically maintained, upgraded, or reconfigured during its continuous
functioning.

From the viewpoint of function (here we use function to mean provide correct com-
puting service to end users), all states of a computing system can be divided into three
classes: functional state, partially functional state, and disfunctional state. In the func-
tional state, the system can function completely; in a partially functional state, the system
can function partially but not completely; in the disfunctional state, the system cannot
function at all. While, from the viewpoint of reaction (here we use reaction to mean react
to the outside environment), all states of a computing system can be divided into three
classes: reactive state, partially reactive state, and dead state. In the reactive state, the
system can react completely; in a partially reactive state, the system can react partially
but not completely; in the dead state, the system cannot react at all. Therefore, a system
in the functional state must be also in the reactive state; a system in a partially functional
may be in either the reactive state or a partially reactive state; a system in the disfunctional
state may be in either the reactive state, a partially reactive state, or the dead state.

220



Based on the above definitions, we can also define a persistent computing system
as a reactive system which will never be in the dead state such that it can evolve into a
new functional state in some (autonomous or controlled) way, or can be recovered into the
functional state from a partially functional or the disfunctional state by some (autonomous
or controlled) way.

A persistent computing system can be constructed by a group of control components
including self-measuring, self-monitoring, and self-controlling components with general-
purpose which are independent of systems, a group of functional components to carry
out special takes of the system, some data/instruction buffers, and some data/instruction
buses. The buses are used for connecting all components and buffers such that all
data/instructions are sent to target components or buffers only through the buses and there
is no direct interaction which does not invoke the buses between any two components and
buffers.

3 Reactability and Continuous Reactability

Now, let us discuss reactions of a persistent computing system in more detail. We consider
that a reaction of a persistent computing system to a stimulus from its outside environ-
ment may be any one of the following three kinds of actions: outputting data to the outside
environment, changing current state of the system, and ignoring the stimulus. There are
some unexpected phenomena in a persistent computing system because of hardware trou-
bles, software bugs, deadlock, livelock, mistakes of specification of the system, and so
on, if the system cannot react to a stimulus. Note that there may be some unexpected
phenomena in a persistent computing system although the system can react to all stimuli.

On the other hand, the definition of a component proposed by Szyperski is “A soft-
ware component is a unit of composition with contractually specified interfaces and ex-
plicit context dependencies only” [13]. An interface is an abstraction of the behavior of
a component that consists of a subset of interactions that component together with a set
of constraints describing when they may occur. A component can have one or more in-
terfaces, and performs its operations via their interfaces. An operation performed via its
interface is most primitive facility in persistent computing systems. A persistent comput-
ing system is constructed by components and binding their interfaces appropriately at the
configuration level, and overall behavior of the system can be defined as sets of operations
with partial order. A reaction to stimuli from the outside environment of a persistent com-
puting system is constructed by performing one or more operations in partial order. From
the viewpoint of software systems, any stimulus which comes from outside environment
of a system can be represented as character strings. Therefore, a reaction starts when
character strings represented as the stimuli are inputted into an interface of an operation
in the reaction. The reaction ends when all operations in the reaction have been finished.
In addition, a reaction in a certain state of a system may be different from a reaction in an
other state of the system although a given stimulus is same.

Under the above considerations, we define the notion of reaction as follows. A reac-

221



tion r of a persistent computing system is a 4-tuple (q,s,e,Θ). q is the current state of the
system. s ∈ Θ is a start operation which receives character strings represented as stimuli
from the outside environment. e ∈ Θ is an end operation: outputting character strings
to the outside environment, changing the system’s current state q to q′ ∈ Q where Q is
the set of all states of the system, or not doing anything. Θ is a set of operations which
the reaction r consists of. In a well-designed and well-implemented persistent computing
system, it is possible to decide a set of character strings represented as stimuli from the
outside environment which make a reaction r start if s, e, and Θ of r can be decided. Thus,
we do not have to consider stimuli from outside environment of a system. Note that we
do not consider how to design and implement a persistent computing system well in this
paper. Our previous definition of a reaction of a persistent computing system in [9] does
not take into account states of the system, so that we cannot enumerate all reactions in a
persistent computing system according to the previous definition.

The definitions of an active and inactive reaction are as follows;

• a reaction r = (q,s,e,Θ) is active if and only if all operations of Θ are executable,

• a reaction r = (q,s,e,Θ) is inactive if and only if at least one operation of Θ is
unexecutable.

We re-define the reactability of a persistent computing system by using the above
definition of a reaction. The reactability of a system is the ratio the number of all ac-
tive reactions to that of all reactions in the system at a certain time. The reactability is
represented as follows;

The reactability =
The number of active reactions

The number of all reactions
. (1)

We also represent states of a running persistent computing system at a certain time as
follows:

• a system is in the reactive state if all reactions are active in the system, that is, the
reactability of the system is 1,

• a system is in a partially reactive state if both active reactions and inactive reactions
exist in the system, that is, the reactability of the system is more than 0 and less
than 1,

• a system is in the dead state if all reactions are inactive in the system, that is the
reactability of the system is 0.

We introduce a new concept, “continuous reactability of a system”. The continuous
reactability of a system is how high the reactability of the system is continuously for a
certain time interval. The continuous reactability of a system is represented 2-tuple (m,
σ2) where m is the mean value of observed reactabilities of the system during a certain
time interval and σ2 is the variance of the observed reactabilities. The variance shows

222



how much the reactability changed during a certain time interval. For computing antici-
patory systems, it is important to know how many reactions of a computing anticipatory
system are active for a certain time interval. To be anticipatory, a computing anticipatory
system should be able to not only predict future events but also react to the future events.
However, not all computing anticipatory systems can predict future events accurately, so
that such a system should be able to react to the future events at any time during a period
when the events may occur. For example, there is a computing anticipatory system which
put up an umbrella when it starts raining. If the system can predict “it will start raining
at 7:00am tomorrow,” then it is enough for the system to be able to put up its umbrella
at 7:00am although the system cannot do so before 7:00am. By contrast, if the system
can predict only “it will start raining tomorrow,” then the system should be able to put up
its umbrella anytime tomorrow. Furthermore, there may be some kinds of future events
which any computing anticipatory system cannot accurately predict.

4 A Measurement Method

In this paper, we propose a method to measure the continuous reactability of a system
in the past. The continuous reactability of a system can be estimated from observed
reactabilities of the system for a period when we want to measure it. It is easy to know
the continuous reactability of a system in the past by using observed reactabilities of the
system for a certain period of time in the past. By contrast, it is difficult to know the
continuous reactability of a system in the future because it is necessary to predict the
reactabilities of the system for a certain period of time in the future. To propose a method
to measure the continuous reactability of a system in the future is a future work.

To measure the continuous reactability of a system in the past, a method to measure
the present reactability of a system is necessary. To measure the present reactability of
a system, it should be able to enumerate all reactions in the system and to count active
reactions.

First, we explain a method to enumerate all reactions in a system. It is possible to
enumerate all reactions in a system by using control flow relations among operations. O
is a set of all operations of a system. Os ⊆ O is a set of all source operations. Oe ⊆ O is
a set of all sink operations. From the viewpoint of control flow, a source operation is an
operation which no operation calls or no operation sends a message to; a sink operation
is an operation which does not call or send message to any operation. A start operation
of a reaction is an element of Os, and an end operation of a reaction is an element of Oe.
Q =de f {qi} (1 ≤ i ≤ n) is a set of all states of a system where n is a natural number.
ρi =de f {r1, . . . ,rk} is a set of all reactions in a certain state qi (1 ≤ i ≤ n) where r j (1 ≤
j ≤ k) is a reaction in qi and k is a natural number. ρi∩ρ j = /0 (1 ≤ i, j ≤ n, i 6= j). R =de f∪n

i=1 ρi is a set of all reactions of the system. A procedure to enumerate all reactions in a
system is as follows;

1. in a state qi ∈ Q (i is a natural number), draw a nondeterministic parallel control-
flow net [1], CFN for short, where s ∈ Os is as the start vertex and e ∈ Oe is as the

223



termination vertex,

2. enumerate all reactions in the CFN,

3. enumerate all reactions whose start operations are s in qi by repeating above pro-
cesses for all CFNs whose start vertices are s in qi,

4. enumerate all reactions of ρi by repeating above processes for all source operations
of Os,

5. enumerate all reactions of R by repeating above processes for all states of Q.

We can assume that it is possible to know Q, O, Os, and Oe from configuration files of a
system.

A CFN is a directed graph which is proposed to represent control flow in concurrent
programs as well as sequential programs [1]. A CFN is a 10-tuple (V , N, PF , PJ , AC, AN ,
APF , APJ , sv, tv). V , N, PF , and PJ are finite sets of vertices. N ⊂ V is a set of elements,
called nondeterministic selection vertices. PF ⊂V (N∩PF = /0) is a set of elements, called
parallel execution fork vertices. PJ ⊂V (N ∩PJ = /0 and PF ∩PJ = /0) is a set of elements,
called parallel execution join vertices. sv ∈V is a unique vertex, called a start vertex, such
that the in-degree of sv is 0. tv ∈ V is a unique vertex, called a termination vertex, such
that the out-degree of tv is 0. AC, AN , APF , and APJ are sets of arcs, such that AC ⊆V ×V ,
AN ⊆ N ×V , APF ⊆ PF ×V , and APJ ⊆V ×PJ . For any v ∈V (v 6= sv, v 6= tv), there exists
at least one path from sv to v and at least one path from v to tv. Any arc (v1, v2) ∈ AC is
called a sequential control arc, any arc (v1, v2)∈ AN is called a nondeterministic selection
arc, and any arc (v1, v2) ∈ APF ∪ APJ is called a parallel execution arc. For any arc
(v1, v2)∈ AC∪AN ∪APF ∪APJ , v1 is said to be adjacent to v2, and v2 is said to be adjacent
from v1. A predecessor of a vertex v is a vertex adjacent to v, and a successor of v is a
vertex adjacent from v. A dominator of a vertex v is a vertex dominates v. v1 dominates v2
if every path from the entry that reaches v2 has to pass through v1. A sub-CFN of a CFN
(V , N, PF , PJ , AC, AN , APF , APJ , sv, tv) is a 10-tuple (V ′, N′, P′

F , P′
J , A′

C, A′
N , A′

PF , A′
PJ , sv,

tv) where V ′, N′, P′
F , P′

J , A′
C, A′

N , A′
PF , and A′

PJ are subsets of V , N, PF , PJ , AC, AN , APF ,
and APJ , respectively. For any v ∈ V ′ (v 6= sv, v 6= tv), there exists at least one path from
sv to v and at least one path from v to tv. A CFN or its sub-CFN has choice structure if
there is at least one vertex which more than one sequential control arc departs from, and
has merge structure if there is at least one vertex which more than one sequential control
arc arrives at. A CFN or its sub-CFN has iteration structure if there is at least one vertex
whose successor is its dominator.

Control flow relations among operations in a persistent computing system are classi-
fied into 3 kinds: sequential, fork, join. Let o1, . . . ,oi ∈ O be operations. An ordered pair
(o1, o2) is sequential relation if and only if o2 is called and executed after o1 finished, or
o1 sends a message (or event) to o2. A tuple (o1, . . ., oi) is fork relation if and only if
o2, . . ., and oi are called and executed concurrently after o1 finished, or o1 multicasts a
message (or event) to o2, . . ., and oi. A tuple (o1, . . ., oi) is join relation if and only if oi

224



Choice

Fork

1 5

7

6

8

9

4

16

Join

Merge

Start operation

Operation

End operation

Sequential control arc

2 3

Iteration

Parallel execution arc

10

11

12

13

14

15

Fig. 1: A CFN to represent control flow relation among operations

is called and executed after o1, . . ., and oi−1 finished, or oi is executed after it received
all messages (or events) from o1, ...,oi−1. In a CFN to represent the control flow relations
among operations, the start vertex is a source operation s ∈ Os and the termination vertex
is a sink operation e ∈ Oe; if a ordered pair (o1, o2) is sequential relation then o1,o2 ∈V ;
if a tuple (o1, . . ., oi) is fork relation then o1 ∈ PF and o1, . . . ,oi ∈ V ; if a tuple (o1, . . .,
oi) is join relation then o1, . . . ,oi ∈ V and oi ∈ PJ . Note both of N and APJ are /0 because
the control flow relations among operations are deterministic. In a state q ∈ Q, there is at
least one reaction whose start operation is s ∈ Os and end operation is e ∈ Oe if and only
if it is possible to draw a CFN where s is as the start vertex and e is as the termination
vertex.

To represent a reaction in the framework of CFN, we define a reaction processing net,
RPN for short, of a CFN. It is a sub-CFN of the CFN which does not have both choice
structure and merge structure. All operations which constitute a reaction are all operations
of a RPN. The number of reactions in a CFN is the number of RPN in the CFN. Fig. 1
shows a CFN. In the CFN, there are 4 RPNs. Sets of operations of the RPNs are {1, 2, 3,
4, 16}, {1, 5, 6, 16}, {1, 7, 8, 9, 10, 11, 13, 14, 15, 16}, and {1, 7, 8, 9, 10, 12, 13, 14,
15, 16}. By finding all of RPNs in a CFN, we can enumerate all reactions in a CFN.

Second, we explain a method to count active reactions in a system. We consider that
targets to be measured (tracked) should be interactions among participating components
whose operations consist of a reaction, such that monitor components, which are devel-

225



opment as control components in a persistent computing system, can grasp the progress
of operations on the relevant reaction and reason about whether the every operations from
the start-point to the end-point can complete their executions or not, i.e., whether the
reaction is active or inactive. Note we propose the most primitive design of reactability
measurement facilities for persistent computing systems, in this paper, we do not consider
reliability, security, and real-time properties.

When the start operation of a reaction starts its execution, the context information
can be informed to monitor components. Here context information contains a 8-tuple:
(IDR,TR, IDO, IDC, IDPO, IDPC, IDSO, IDSC). They mean respectively, a reaction ID, the
time when the reaction started, an operation ID, a component ID, the predecessor op-
eration ID, the ID of a component where the predecessor operation is performed, the
successor operation ID, and the ID of a component where the successor operation is per-
formed. Note that such context information never contain payload (body) of the message.
Similarly, when a component executes an operation to interact with an other component,
only the tuple are sent to monitor components. Monitor components receive such context
information and check the conditions of a reaction by analyzing them. To decide whether
a operation in a reaction is executable or not, monitor components check two context
information: one of operations in the source component (below “source component’s
information”), other one of operations in the destination component (below “destination
component’s information”). Monitor components check whether IDR, TR, IDO, IDC, IDSO
and IDSC in source component’s information is equal to IDR, TR, IDPO, IDPC, IDO, and
IDC in destination component’s information or not. After that, the monitor components
calculates difference between compare time of receipt of them. An operation can be re-
garded as unexecutable if the check cannot be passed and/or the difference differs vastly.
As a result, monitor components can grasp the number of active reactions.

However, by using such “reactive sensing”, monitor components can not aware that
an operation in the reaction is in unexecutable state till the start operation can be exe-
cuted. Ideally, it is necessary for monitor components to awake soon after an operation is
unexecutable for some reasons (e.g., failures or attacks). As a practical scheme to solve
this issue, we require “proactive sensing,” meaning that monitor components send query
to an operation periodically and then receive the ACK from the operation in such a way
the responsible operation receives and sends the messages via the contractually speci-
fied interfaces. Since the interfaces correspond operations consisting of reactions, control
components can awake that the relevant operation is unexecutable if the ACK can be sent
to them in an allowable time.

According to those methods, we can measure the reactability of a persistent computing
system at a current time. We can also estimate the continuous reactability of the system
in the past from the observed reactabilities of the system for a certain time interval in
the past. The proposed measurement method does not depend on persistent computing
systems, so that it is possible to measure the reactability and the continuous reactability
of a component-based reactive system in the past as well as a persistent computing system
by using the measurement method.

226



5 Discussion

We have not considered reliability, security, and real-time properties in the proposed
method. From the viewpoint of reliability, we should investigate how to check whether
an operation is executable or not if the operation behaves irregularly because of its bugs.
In order to improve the reliability of a persistent computing system, it is natural to put
more than one component which can provide same operation in a persistent computing
system. In such case, we should investigate how to check whether an operation which
more then one component can provide in a system is executable or not. From the view-
point of security, even if more than one component which can provide same operation
exists in a persistent computing system, it may have to use only a particular component.
In such case, we should investigate how to measure the reactability and the continuous
reactability of the system. Moreover, it is possible to measure the reactability and the
continuous reactability of a system which has malicious components. From the viewpoint
of real-time operation, we should take into account turnaround time about a reaction of a
persistent computing system when the reaction must be finished until a certain time. Mon-
itor components to measure the reactability of a system may become a bottleneck of the
performance of the system, such that we should put several or more monitor components
on the system. Thus, we should investigate how we keep the consistency of information
about reactions of the system among those monitor components.

Most important and challenging issue is how can we measure the reactability and the
continuous reactability of a persistent computing system in the future and how can we
maintain enough reactability and continuous reactability in the future. We might take
into account the probability of hang-up of components or operations because of specifi-
cation faults and bugs, the reliability and performance of hardwares where components
are working and connection channels among components, the probability of occurrence
of maintain components, the probability of hang-up of components or operations because
of attacks or accidents, the probability of hang-up of components or operations because
of occurrences which no one cannot think about in development phase of the system. It is
difficult to predict above things, so that how to measure the reactability and the continuous
reactability is really a challenging problem.

6 Concluding Remarks

In this paper, we re-defined the reactability and defined the continuous reactability of
a persistent computing system, and presented a method to measure the continuous re-
actability in the past. The proposed measurement method does not depend on persistent
computing systems, so that it is possible to measure the reactability and the continuous
reactability of a component-based reactive systems in the past as well as a persistent com-
puting system by using the measurement method. Soft system bus based methodology
is proposed in order to build persistent computing systems [2]. A system built using this
methodology is called soft system bus based system. The soft system bus based system

227



is expected as a persistent computing system. We will therefore apply our measurement
method to the soft system bus based system and evaluate whether the method is useful or
not. On the other hand, we have not considered reliability, security, and real-time prop-
erties in the proposed measurement method. It is necessary to improve the measurement
method from view point of reliability, security, and real-time properties.

The continuous reactability of a system is a new concept of computing systems, so
that it will be raise new research problems of computing anticipatory systems as well
as persistent computing systems. For example, how to measure the reactability and the
continuous reactability of a system in the future is a challenging problem.

References

[1] Cheng, J.: Nondeterministic Parallel Control-Flow / Definition-Use Nets and Their
Applications. In Joubert, G. R., Trystram, D., Prters, F. J., Evans, D. J., eds.: Parallel
Computing: Trends and Applications, Proceedings of the International Conference,
ParCo93, Grenoble, France, 7-10 September 1993. Elsevier B.V. (1994) 589-592

[2] Cheng, J.: Connecting Components with Soft System Buses: A New Methodology
for Design, Development, and Maintenance of Reconfigurable, Ubiquitous, and Per-
sistent Reactive Systems. In: Proc. of 19th International Conference on Advanced
Information Networking and Applications, IEEE Computer Society Press (2005)
667–672

[3] Cheng, J.: Comparing Persistent Computing with Autonomic Computing. In: Proc.
11th International Conference on Parallel and Distributed Systems, IEEE Computer
Society Press (2005) 428–432

[4] Cheng, J.: Persistent Computing Systems as Continuously Available, Reliable, and
Secure Systems. In: Proc. 1st International Conference on Availability, Reliability
and Security, IEEE Computer Society Press (2006) 631–638

[5] Cheng, J., Shang, F.: Persistent Computing Systems as An Infrastructure of Comput-
ing Anticipatory Systems. International Journal of Computing Anticipatory Systems
18 (2006) 61–74

[6] Dubois, D.M.: Computing Anticipatory Systems with Incursion and Hyperincur-
sion. In Dubois, D.M., ed.: Computing Anticipatory Systems: CASYS - First Inter-
national Conference. AIP Conference Proceedings 437., The American Institute of
Physics (1998) 3–29

[7] Dubois, D.M.: Introduction to Computing Anticipatory Systems. International
Journal of Computing Anticipatory Systems 2 (1998) 3–14

[8] Dubois, D.M.: Review of Incursive, Hyperincursive and Anticipatory Systems -
Foundation of Anticipation in Electromagnetism. In Dubois, D.M., ed.: Computing
Anticipatory Systems: CASYS’99 - Third International Conference. AIP Confer-
ence Proceedings 517, The American Institute of Physics (2000) 3–30

228



[9] Endo, T., Goto, Y., Cheng, J.: Measuring Reactability of Persistent Computing Sys-
tems. In Lumpe, M., Vanderperre, W., eds.: Software Composition: 6th International
Symposium, SC 2007, Braga, Portugal, March 24-25, 2007, Revised Selected Pa-
pers. Volume 4829 of Lecture Notes in Computer Science., Springer-Verlag (2007)
144–151

[10] Harnel, D., Pnueli, A.: On The Development of Reactive Systems. In Apt, K.R.,
ed.: Logic and Models of Concurrent Systems. Springer-Verlag (1989) 477–498

[11] Pnueli, A.: Specification and Development of Reactive Systems. In Kugler, H.J.,
ed.: Information Processing 86, North-Holland/IFIP (1986) 845–858

[12] Rosen, R.: Anticipatory Systems - Philosophical, Mathematical and Methodological
Foundations. Pergamon Press (1985)

[13] Szyperski, C., Gruntz, D., Murer, S.: Component Software, Beyond Object-
Oriented Programming, Second Edition. ACM Press/Addison-Wesley Publishing
Co. New York (2002)

229


