
A Software Development Framework for Various
Anticipatory Reasoning-Reacting Systems

Kai Shi, Yuichi Goto, and Jingde Cheng
Department of Information and Computer Sciences, Saitama University

Saitama, 338-8570, Japan
+81-48-858-3785 - {shikai, gotoh, cheng}@aise.ics.saitama-u.ac.jp

- http://www.aise.ics.saitama-u.ac.jp

Abstract
Building anticipatory reasoning-reacting systems (ARRS) is difficult. An ARRS consists
of many components and works based on some fragments of logic systems and formal
theories. Besides, there is no general development process to build a practical ARRS. On
the other hand, different ARRSs have common functions and similar working process.
The development of these common parts should not be repeated when we build different
ARRSs. To this end, this paper proposes the first development framework for ARRSs,
which is a reusable, semi-finished ARRS that can be customized by developers to produce
custom ARRSs for various target domain. By using the framework, we can use a general
development process to build a particular ARRS.
Keywords : anticipatory reasoning-reacting system, software development, framework,
multi-agent system, soft system bus.

1 Introduction

The traditional reactive systems are passive, i.e., the systems only can perform those
operations in response to instructions explicitly issued by users or application programs,
but have no ability to do something actively and anticipatorily by themselves [4]. In order
to make reactive systems anticipate, Cheng proposed a new kind of highly reliable and
secure computing systems called anticipatory reasoning-reacting systems (ARRS) [4],
which have anticipatory ability by making qualitative predictions of future and taking
proper actions, therefore it can forestall attacks and disasters.

Building an practical ARRS is not an easy task. An ARRS consists of many compo-
nents and it must work based on some fragments of logic systems and formal theories.
Besides, there is no general development process to build a practical ARRS by now. On
the other hand, various ARRSs have many common functions and similar working pro-
cess. The development of these common parts should not be repeated when we build
different ARRSs.

In order to facilitate the development and maintenance of ARRSs, Goto et al. [12]
proposed a development and maintenance environment for ARRSs, identified and classi-
fied common components that an ARRS should have, and drew up the basic requirements

 International Journal of Computing Anticipatory Systems, Volume 28, 2014
Edited by D. M. Dubois, CHAOS, Liège, Belgium, ISSN 1373-5411 ISBN 2-930396-17-2

95

of the development and maintenance environment. However, they did not discuss how
to develop a practical ARRS for a target domain. Is there a unified development pro-
cess/method which can build various practical ARRSs for any target domain?

To this end, this paper proposes a development framework [11] which is used to build
ARRSs for various target domains. The framework is a reusable, semi-finished ARRS that
can be customized by developers to produce custom ARRS for a specific target domain.
By using the framework, we can use a general development process to build a particular
ARRS. Besides, because the previous ARRS are not suit to construct such a framework,
this paper also proposes a new ARRS which can manage the differences of different target
domains.

The rest of the paper is organized as follows. Section 2 reviews current ARRSs, and
discusses the limitation of the ARRSs. Section 3 shows what the new ARRS is, and
its necessity. Section 4 presents the software development framework for ARRSs, the
process to build a practical ARRS based on the framework, and implementation issues of
the framework. Finally, section 5 gives some concluding remarks.

2 Anticipatory Reasoning-Reacting Systems

2.1 Overview of Anticipatory Reasoning-Reacting Systems

An anticipatory reasoning-reacting system (ARRS) is a computing system containing a
controller C with capabilities to measure and monitor the behavior of the whole system,
a traditional reactive system RS, a predictive model PM of RS and its external computing
environment, and an anticipatory reasoning engine ARE such that according to predic-
tions by ARE based on PM, C can order and control RS to carry out some operations with
a high priority [4].

As a certain kind of anticipatory systems, to be anticipatory, ARRSs should behave
continuously and persistently without stopping its running [10]. Thus, persistent com-
puting systems should be as an infrastructure of computing anticipatory systems [10].
Cheng proposed Persistent computing as a new methodology, aiming to develop continu-
ously dependable and dynamically adaptive reactive-systems, called “persistent comput-
ing systems”, which have two key characteristics/fundamental features: (1) persistently
continuous functioning, i.e., the systems can function continuously and persistently with-
out stopping its reactions, and (2) dynamically adaptive functioning, i.e., the systems can
be dynamically maintained, upgraded, or reconfigured during its continuous functioning
[5, 6, 7].

As a computing anticipatory system with the ability to predict and take next actions,
an ARRS is complex. The working process of ARRSs mainly includes two phases. The
first phase is prediction, to make some future events known in advance, especially on the
basis of special knowledge, or statements about the future events. And the second phase
is choosing anticipatory actions according to the predictions, and taking these actions.

Goto et al. [12] re-defined the architecture of the ARRS shown in figure 1, as well as

96

FC

St

FC FC

St

FC FC

St

FC

ETDBLTDBPr

DM C/S

Me Inf

Mo

 Antcipatory Reasoning-Reacting System

SSB

External Environment

data/instruction interaction

component database

data/instruction interaction between stations

data-instruction station

Rec

...

Fig. 1: The Architecture of an Anticipatory Reasoning-Reacting System

identified and classified common functional/non-functional components and application-
independent data in all ARRSs. They also explained how these components work and
cooperate. Common components in all ARRSs are classified into two kinds of com-
ponents: PCS-core components and ARRS-core components. PCS-core components are
common components in all persistent computing systems. PCS-core components include
central control components, such as a central controller/scheduler (C/S), a central mea-
surer (Me), a central recorder (Rec), a central monitor (Mo), and an central informant
(Inf), as well as the soft system buses [3] which provides a communication channel with
the facilities of data/instruction transmission and preservation to connect components.
ARRS-core components are common components in all ARRSs, but not in all persistent
computing systems. ARRS-core components include a predictor (Pr), a decision maker
(DM), a logical theorem database (LTDB), and an empirical theory database (ETDB). A
predictor receives several kinds of data and outputs predictions. A decision-maker re-
ceives predictions from a predictor, and outputs instructions to an ARRS. The logical
theorem database stores fragments of logic systems underlying anticipatory reasoning or
reasoning about actions. The empirical theory database stores empirical theories of a tar-
get domain as predictive models, behavioral models, or world models. The data involving
in an ARRS are raw input data, fragments of logic systems, a world model, a predictive
model, a behavior model, translation rules, calculation rules, interests, and priority. Only
fragments of logic systems are application-independent data.

2.2 Weakness of Original Anticipatory Reasoning-Reacting Systems

The motivation of original ARRS is to make the ARRS itself have the ability to antici-
pate, but the original ARRS are not suitable for the new target domains of ARRSs. In an

97

original ARRS, the anticipatory entities are the system itself, i.e., the ARRS can predict
potential attacks or failure, and take anticipatory action to deal with such problems. How-
ever, some new target domains of ARRSs were proposed, such as the ARRS for air traffic
control [8, 14]. In such target domains, the anticipatory entities are not the ARRS itself
but the entities outside of the ARRS, e.g., the aircrafts in air traffic control. Although the
original ARRSs are suitable for the early target domains, it can not tackle the new target
domains in the same way.

An original ARRS needs to re-build all current status as logical formulas over time.
In an original ARRS, for each prediction, we need gather all current status of the target
problem, and translate all status to logical formulas, then use these formulas to predict.
Similar process is taken when to choose actions. Because an original ARRS handles all
current status together, when the current status changes over time, we have to re-build
all current status as logical formulas, re-predict by using these logical formulas, and re-
choose actions by using these logical formulas. However, in the real world, only part of
status changes over time, i.e., most of entities stay unchanged. Thus such re-building for
all status is unnecessary.

The amount of anticipatory entities affects the efficiency of an original ARRS. In an
original ARRS, there is only one predictor and one decision-maker, and the ARRS uses all
current status to predict and choose action. Thus, when the amount of anticipatory entities
increases, the efficiency of the ARRS reduces. Such effect may be tolerable in the early
target domains of ARRSs, because there are few anticipatory entities such as components
and services. However for the new target domains, the number of anticipatory entities
increases a lot. As a highly reliable computing system, the ARRS should not be affected
by the number of anticipatory entities.

The computing of prediction and choosing actions is centralized in original ARRSs.
Because there is only one predictor and one decision-maker in an ARRS, we have the
following problems. First, if the only predictor breaks down, how does the ARRS behave
continuously and persistently? Second, the current architecture of ARRSs can not support
parallel computing/distributed computing, because of the only one predictor and decision-
maker, which spends most of computing time, i.e. the predictor and decision-maker are
the bottleneck of the ARRS.

The original ARRSs do not take into account system flexibility. As software, an ARRS
can not avoid business changes. Besides, as a persistent computing system, an ARRS
should not stop when it changes its business. By now, it is unsolved how to change an
ARRS’s business without stopping it.

The original ARRSs do not take into account to support for different systems/devices
outside the ARRSs. An ARRS especially for new target domains often deals with a lot of
devices outside the ARRS, such as aircrafts, vehicles, and radars. However, it is unsolved
how to handle these different devices in a unified way in ARRSs. Moreover, the ARRS
should not stop when we add/remove/modify such a system/device.

98

3 New Anticipatory Reasoning-Reacting Systems

3.1 The Conceptual Model of New Anticipatory Reasoning-Reacting Systems

Due to the weakness of the original ARRS, it is not suitable to construct a development
framework based on the original ARRS. Therefore this paper proposes a new kind of
ARRSs to underline the development framework for various ARRSs. The conceptual
model of the new ARRS is an agent-based system. In the middel of figure 2, it is the
conceptual model of an ARRS, or called the virtual world on an ARRS. And on the top
of figure 2, it is the real world of target domains for the ARRS. In the real world, there
are different kinds of active entities, which have ability to act, i.e., have ability to change
the status of the real world, e.g., computing systems, software components, computing
services, airplanes, vehicles, while there are also some passive entities which do not have
ability to act, e.g., runways, taxiways. So we propose a virtual world on ARRSs to handle
the differences of the entities, by mapping each entity in the real world of target domain
to an agent in the virtual world. There are two kinds of agents in ARRS: active agents and
passive agents. In figure 2, in the virtual world on an ARRS, a circle stands for an active
agent, and a square stands for a passive agent. For any active entity in the real world,
we map it to an active agent in the virtual world. For any passive entity, we map it to a
passive agent. In the virtual world, each agent collects its related current status by itself.
Such related current status includes the information about itself, and information about
its related agents, i.e., the relationships between itself and other related agents (In figure
2 a two-way arrow stands for the relationship). And each agent can find out which other
agents could affect it, and also knows whether there are some unrelated agents become
related with it when time passes by, vice versa. Besides, each agent can automatically
update all above information. For each active agent, besides the above ability, it has the
ability to anticipate. It means each active agent knows how to predict, how to choose
actions, and how to take the actions. For the passive agents, because they have not ability
to act, they can not anticipate. Thus the passive agents do not need the ability to predict
and to choose actions.

If an ARRS can work like the virtual world that has been stated above, we could make
up for original ARRSs’ weakness. First, because we map different type of anticipatory
entities to similar agents, the new ARRS can handle all of the anticipatory entities in the
same way, i.e., the new ARRS can handle both the original target domain and new target
domain of ARRSs. Second, because each active agent only manage its related current
status, if an agent’s status changes over time, only this agent and its related agents need
to re-build the current status, while other unrelated agents do not need to to re-build the
current status. Third, because each active agent has ability to predict and to choose actions
by itself, the amount of anticipatory entities can not affect the efficiency of the ARRS.
Fourth, because each active agent has computing resource to predict and choosing actions
by itself, the new ARRS supports parallel computing inherently, and it is easy to deploy
an ARRS in a distributed environment. Besides, the failure of any agent could not affect
other agents. Fifth, agent-based systems show flexibility to face the changing business

99

Fig. 2: View of the new anticipatory reasoning-reacting systems

[1, 13]. Because we encapsulate the business into agents, we could add/remove/modify
agents dynamically to meet the changing business.

3.2 Architecture of New Anticipatory Reasoning-Reacting Systems

Figure 3 shows the architecture of the new ARRS. This architecture satisfies: (1) the
architecture is a practical implementation of the conceptual model of a new ARRS, (2) the
architecture can be used directly to build a software development framework for ARRSs.
A new ARRS consists of PCS-core components, ARRS-core components, agents pools,
and I/O adapters. In a new ARRS, PCS-core components are as same as the current
ARRS presented in section 2.1. ARRS-core components are also as same as the current
ARRS, however, there is no longer only one predictor and one decision maker. A new
ARRS provides redundant predictors and decision makers. Each predictor or decision
maker actually provides a kind of computing service. When other components/objects
in the ARRS request such a service, a unoccupied predictor or decision maker will be
called. The new ARRS provides redundant predictors and decision makers, because: (1)
when one predictor/decision maker fails, we can use other predictors/decisions, (2) when
one predictor/decision maker is occupied, other predictors/decision makers could be used,
which improves the concurrency of the ARRS.

In a new ARRS, an agent is an object which encapsulates data and behavior, and run-
ning in an agents pool. Each agent has data structure facts container and observers’ list.
A facts container stores facts which are logical formulas to represent the status of the

100

Fig. 3: Architecture of a new ARRS

agent itself or relationship between the agent and other agent. An observers’ list records
all of other objects who want to observe the change of this agent. Each agent can find out
which other agents are related with itself, accumulates the current status about the agent
itself and relationship between itself and other agents, and notifies other agents who are
on its observers’ list once the agent’s properties changes. Agents are divided into two
categories: active agents and passive agents. For an active agent, it has additional data
structures predictions container and actions container. A predictions container stores in-
termediate candidates of prediction. An actions container stores intermediate candidates
of next actions. An active agent also has some additional functions: to predict by calling
a predictor, and to choose actions by calling a decision maker. Besides, for each active
agent, we can implement its every possible (anticipatory) action as a behavior (function).
Each behavior includes the detail instructions about how to take an action. In the concep-
tual model of the new ARRS, each active agent has ability to predict and choose action,
while in the actual architecture, an agent does not have computing resource to predict and
choose action inside itself, but only calls a predictor and a decision-maker. We remove the
computing of prediction and choosing action form active agents, and make the prediction
and choosing action as computing services which is used for agents to call, because: (1)
active agents may be different, however the functions of prediction and choosing action
are the same, so we should distinguish commonality and individuality, (2) in many cases,
active agents does not change its status most of time, then the computing resource is not
necessary.

An agents pool is a component which is a running environment of agents. An agents
pool provides memory, CPU time, and other computing resource to agents running inside
it, manges the life cycle of agents, and interacts with the agents. Thus one agent can
not run outside the agents pools. We propose agents pools for the following reasons:
(1) because an agent needs several resource, the agents pool can control the allocation

101

and deallocation of these resource. (2) we can deploy several agents pools on different
computer servers, while an agent can move among these different agents pools, when one
agents pools fail, the agents in this container can move to other agents pools, (3) Load
balancing can be achieved by the same way.

An I/O adapter is a component which maps to a functional component, a device/equip-
ment, or an reactive system. An I/O adapter can inputs from or outputs to a functional
component, a device/equipment, or an reactive system. In the conceptual model of the
new ARRS, each functional component, device/equipment, or reactive system is mapped
to an agent directly, while in the actual architecture, each functional component, de-
vice/equipment, or reactive system is mapped to an I/O adapter, then that I/O adapter is
mapped to an agent. The reason why we need I/O adapters is as follows. Although we can
map each entity in real world to an agent in ARRSs, we may not realize this map directly,
because there are many kinds of entities in the real world, while one entity may involve
several systems or equipments. For example, if we want to gather the information of an
aircraft, we may deal with radars, GPS on the aircraft, geographic information databases,
or other systems. Besides, when the ARRS predicts and chooses actions for the agent
aircraft, the ARRS needs to give instructions to some equipment of the aircraft or display
the warnings or actions suggestions on both the monitor of aircraft and the monitor of the
control tower. Because there are kinds of input data and output instructions for ARRSs,
we should decouple these input data and output data from the representation of data in
ARRSs. We can shield these different and provide a unified interface inside the ARRS by
encapsulating the differences of devices of real world in I/O adapters. In an ARRS, it is
regular to add/remove/modify input data type, such as adding a new kind of sensor and
retirement of outdated equipments. We handle these variation by add/remove/modify a
corresponding I/O adapter.

Now we present the working process of the new ARRS. For each agent, it first gathers
all related current status including both the information about itself and the relationships
between itself and other related agents. In order to gather and update the relationship
information in time, one agent needs to observe its related agents to find out whether their
statuses change. If one agent wants to observe another related agent, it registers in that
agent’s observers’ list. Once that agent’s properties change, it notifies all of the agents in
its observers’ list to update. After one agent updates its current status, it sends the status
to a predictor, gets the translated logical formulas, and stores them in its facts container.
Then an active agent sends its current status to a predictor, gets the predictions from
the predictor, and stores them into the predictions container. At this moment the active
agent could give the ARRS users an alarm/a warning about the prediction. After that,
active agent sends the predictions to a decision-maker, gets next actions from the decision-
maker, and stores the candidates in its actions container. After the active agent gets next
actions, it is time to “act”. Because each active agent implements its every possible action
as a behavior (function), the active agent can call the corresponding function directly.
Each function includes the detail instructions about how to take the action. The detail
instructions may calls the corresponding I/O adapters and functional components. Then

102

the I/O adapters and functional components handle these instructions, and “act”.

4 Framework Based on New Anticipatory Reasoning-Reacting Sys-
tems

4.1 Framework Overview

As a reusable, semi-finished application that can be customized by developers to produce
custom applications [11], a software development framework is an ideal solution to build
complex software for different target domains, such as ARRSs. The developers should
not build an ARRS for a target domain from scratch. Besides, the developers should
not focus on the ARRS itself, such as how to predict, how to choose actions, how to
ensure the security, and how to improve the efficiency, but to focus on the business of
the target domain. In order to “stand on the shoulders of giants”, the developers need
not only the common components of ARRSs, but also a skeleton which specifies how
these components cooperate. Furthermore, the developers also need a mechanism to add
their own code based on the specific target domain into these common parts of ARRSs.
Thus, a software development framework with modularity, re-usability, and extensibility
is suitable for this purpose.

The software development framework for ARRSs is a semi-finished ARRS that can be
customized by developers to build a practical ARRS for a target domain. The framework
consists of frozen spots and hot spots. Frozen spots remain unchanged in any instantiation
of the application framework, such as the architecture of the ARRS, its basic components
and the relationships between them [15, 16]. Hot spots represent those parts where the de-
velopers can add their own code of specific functionality to their own ARRS for the target
domain [15, 16]. Because the new ARRS is proposed to construct a software framework
for ARRSs, the architecture of the framework is as same as a new ARRS’s. Next we will
distinguish between the frozen spots and hot spots of the framework.

4.2 Frozen Spots

Frozen spots are implemented parts of the semi-finished ARRS, which are the same in
any ARRS. The Frozen spots of the framework for ARRSs include: (1) the architecture of
new ARRSs, (2) the components, including PCS-components, ARRS-core components,
agents pools, and I/O adapters, (3) the specification for components to handle errors, to
exchange data, and to invoke operations on each other, (4) implemented parts of abstract
class of active agents and passive agents, such as facts container, observers list, predictions
container, actions container, method to formalize the current status, method to predict, and
method to choose action of active agent, as well as facts container and observers list of
passive agents.

103

4.3 Hot Spots

Hot spots characterize the incomplete parts of the semi-finished ARRS, which are differ-
ent in different target domains. These hot spots can be adapted to meet specific target
domain requirements. The differences between different ARRSs are: (1) world model,
predictive model, and behavioral model for the target domain, refers to section 4.5, (2)
active agents, (3) passive agents, and (4) I/O adapters. The models for the target domain
are not belong to hot spots, because they are just logical formulas as data. Thus in the
framework, the hot spots rely on active agents, passive agents, and I/O adapters. The
framework defines the abstract class of active agents, passive agents, and I/O adapters.
By implementing the abstract methods of these abstract classes, the developers of ARRSs
could construct their own agents, passive agents, and I/O adapters for the target domain.
The abstract methods include: (1) For the abstract class of active agent, its abstract meth-
ods include the method to gather current status about itself, including to determine which
other agents have relationship with itself, and the method to handle the effective next ac-
tions. (2) For the abstract class of passive agent, its abstract method is to gather current
status about itself, including to determine which other agents have relationship with itself.
(3) For the abstract class of I/O adapter, its abstract method is to communicate (input and
output methods) with other components in the ARRS.

4.4 Supporting Tools

In order to build a practical ARRS based on the framework, we also need some supporting
tools. Theses supporting tools include database management, model constructing, system
configuration, and system management.

4.5 Building a Practical ARRS Based on the Framework

In order to build an ARRS for the target domain, we must have the knowledge of the
real world, predictive laws, and behavioral patterns, while all these information are rep-
resented as logical formulas of a specific logic (or logics). These models describe the
specific theories or facts about the target domain. In ARRSs, the models are divided into
three kinds called world model, predictive model, and behavioral model, which represent
the information of the real world, predictive laws, and behavioral patterns correspond-
ingly. However, this paper does not discuss how to construct these models.

Based on the models, we design and implement the agents. The implement of agents
is similar with traditional object-oriented programming. Each agent has properties and
methods. Each agent has capability to update their properties by communication with
I/O adapters or functional components. Each agent must implement the abstract methods.
Based on different input/output devices and cooperative systems involving in the problem,
we design and implement the corresponding I/O adapter for each device/system.

Now we discuss briefly how to implementation of an ARRS for runway safety by
using the framework. The ARRS for runway safety belongs to the new target domain

104

of ARRSs shown in section 2.2. The ARRS for runway safety involves a lot of enti-
ties, equipments, and software systems outside the ARRS. The entities include aircrafts,
vehicles, runways, and taxiways. The equipments include the equipments on aircrafts,
equipments on vehicles, radars, and other equipments of the airports. The softare systems
refer to the currently available software systems using by aircrafts and airports. To imple-
ment an ARRS for runway safety, the developers of the ARRS need to construct the world
model, predictive model, and behavioral model for runway safety. Next, the developers
implement the agents. In this case, aircraft and vehicle are active agents, while runway
and taxiway are passive agents. We take aircraft for an example. The developers imple-
ment a concrete agent class called Aircra f t by extending the abstract class of active agent.
The class Aircra f t contains the properties that an aircraft should have, and the methods
to represent the actions of a aircraft should have such as takeoff and landing. Besides,
the developers implement the abstract methods in abstract class of active agent, e.g., the
method to gather related status. After that, the developers implement an I/O adapter for
each equipment or existing system. Finally, the developers configure the ARRS. Then the
ARRS for runway safety is built.

4.6 Implementation Issues of the Framework

The soft system buses (SSB) [3] are the infrastructure of the framework, which connects
all components of the framework, by providing: (1) the way to identify and specify any
component in an SSB-based system, (2) the way of self-measuring, self-monitoring, and
self-recording of system states, (3) the way for components to send data/instructions to
and receive data/instructions from data-instruction stations, (4) the way for components to
specify partners in cooperation and communication, (5) the way for control components
to manage functional components including, adding, upgrading, replacing, and removing
the functional components and starting or stopping the running of them, (6) the facility of
data/instruction preservation and retransmission, (7) the facility of authentication, (8) the
facility of encipherment, and (9) the way to stop the interaction between an SSB-based
system and its outside world [6]. A structured p2p based SSB [17] is being developed.

A predictor consists of a formula generator, a forward reasoning engine, a prediction
choose, and a calculator [12]. A decision-maker consists of a formula generator, a forward
reasoning engine, an action chooser, and a calculator [12]. The core of both a predictor
and a decision-maker is a forward reasoning engine. FreeEnCal [9] as a forward reasoning
engine with general-purpose, is a hopeful candidate.

The implementation of the agent and the agents pool is similar to the implementa-
tion“the servlet and the web container” or “the EJB and the EJB container” [2]. It is a
mature technology. And the detail about the design and implementation issues can refer
to [2].

The use of the (I/O) adapters is also a widely used technology. And the detail about
how to design and implementation such a adapter can refer to [18].

105

5 Concluding Remarks

This paper proposed a software framework for developers of ARRSs to develop various
practical ARRSs. In order to design such a framework which can be suitable to develop
various ARRSs, this paper also proposed new ARRSs, which also could cover the weak-
ness of original ARRSs to some extent. However, if there are new target domains of
ARRSs emerge, it is uncertain whether the framework can handle the new target domains
of ARRSs.

By using the framework, the developers of ARRSs could understand the ARRS eas-
ily, design and implement a specific ARRS easily. Because the framework specifies a
template for the ARRS, based on such a template, we could develop new components of
ARRSs easily.

The framework is part of development and maintenance environment for ARRSs [12].
The work is ongoing. The next step is to implement the common components and the
supporting tools.

References

[1] H. J. Ahn, H. Lee, and S. J. Park. A flexible agent system for change adaptation in
supply chains. Expert Systems with Applications, 25(4):603–618, 2003.

[2] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and scalability of ejb
applications. In Proc. ACM Sigplan Notices, volume 37, pages 246–261. ACM,
2002.

[3] J. Cheng. Soft system bus as a future software technology. In Proc. 8th Interna-
tional Symposium on Future Software Technology. Software Engineers Association
of Japan, 2004.

[4] J. Cheng. Temporal relevant logic as the logical basis of anticipatory reasoning-
reacting systems. In Proc. Computing Anticipatory Systems: CASYS - 6th Interna-
tional Conference, AIP Conference Proceedings, volume 718, pages 362–375. AIP,
2004.

[5] J. Cheng. Comparing persistent computing with autonomic computing. In Proc.
11th International Conference on Parallel and Distributed Systems, pages 428–432.
IEEE Computer Society Press, 2005.

[6] J. Cheng. Connecting components with soft system buses: A new methodology for
design, development, and maintenance of reconfigurable, ubiquitous, and persistent
reactive systems. In Proc. 19th International Conference on Advanced Information
Networking and Applications, pages 667–672. IEEE Computer Society Press, 2005.

106

[7] J. Cheng. Persistent computing systems as continuously available, reliable, and
secure systems. In Proc. 1st International Conference on Availability, Reliability
and Security, pages 631–638. IEEE Computer Society Press, 2006.

[8] J. Cheng, Y. Goto, and N. Kitajima. Anticipatory reasoning about mobile objects in
anticipatory reasoning-reacting systems. In Proc. Computing Anticipatory Systems:
CASYS - 8th International Conference, AIP Conference Proceedings, volume 1051,
pages 244–254. AIP, 2008.

[9] J. Cheng, S. Nara, and Y. Goto. FreeEnCal: A forward reasoning engine with
general-purpose. In Proc. 11th International on Conference Knowledge-Based In-
telligent Information and Engineering Systems, Part II, Lecture Notes in Artificial
Intelligence, volume 4693, pages 444–452. Springer-Verlag, 2007.

[10] J. Cheng and F. Shang. Persistent computing systems as an infrastructure of comput-
ing anticipatory systems. International Journal of Computing Anticipatory Systems,
18:61–74, 2006.

[11] M. Fayad and D.C. Schmidt. Object-oriented application frameworks. Communica-
tions of the ACM, 40(10):32–38, 1997.

[12] Y. Goto, R. Kuboniwa, and J. Cheng. Development and maintenance environment
for anticipatory reasoning-reacting systems. International Journal of Computing
Anticipatory Systems, 24:61–72, 2011.

[13] N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and
development. Autonomous agents and multi-agent systems, 1(1):7–38, 1998.

[14] N. Kitajima, Y. Goto, and J. Cheng. Development of a decision-maker in an anticipa-
tory reasoning-reacting system for terminal radar control. In Proc. 4th International
Conference on Hybrid Artificial Intelligence Systems, Lecture Notes in Artificial In-
telligence, volume 5572, pages 68–76. Springer-Verlag, 2009.

[15] W. Pree. Design Patterns for Object-Oriented Software Development. Addison-
Wesley, 1994.

[16] W. Pree. Meta patterns - a means for capturing the essentials of reusable object-
oriented design. Object-Oriented Programming, pages 150–162, 1994.

[17] M. R. Selim, Y. Goto, and J. Cheng. A low cost and resilient message queuing
middleware. International Journal of Computer Science and Network Security,
8(8):225–237, 2008.

[18] S. Van den Enden, E. Van Hoeymissen, G. Neven, and P. Verbaeten. A case study
in application integration. In Proc. the OOPSLA Business Object and Component
Workshop, 15th Annual Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, 2001.

107

