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Abstract
A computing anticipatory system must have the ability to make decision about its
next action. To design and develop various computing anticipatory systems effec-
tively, it is desirable to find a general methodology for decision making in computing
anticipatory systems. This paper presents a deontic relevant logic approach to rea-
soning about actions in computing anticipatory systems. The paper discusses why
the deontic relevant logic should be adopted as the fundamental logic to underlie
reasoning about actions, presents a forward reasoning engine for reasoning about
actions, and shows results of a case study to perform automated reasoning about
actions based on deontic relevant logic.
Keywords : Anticipatory reasoning-reacting systems, Decision making, Deontic
relevant logic, Action reasoning engine for general-purpose

1 Introduction

The concept of an anticipatory system first proposed by Rosen in 1980s [16].
Rosen considered that “an anticipatory system is one in which present change of
state depends upon future circumstance, rather than merely on the present or past”
and gave a first definition of an anticipatory system as “a system containing a
predictive model of itself and/or its environment, which allows it to change state
at an instant in accord with the model’s prediction to a latter instant.” Until now,
anticipatory systems have been discussed and developed by scientists from various
disciplines [5, 10, 15, 17]. Dubois defined a computing anticipatory systems as “a
system which computes its current states in taking into account its past and present
states but also its potential future states” and introduced the concepts of strong
and weak anticipation [11, 12].

The notion of anticipatory system, in particular, computing anticipatory system,
implies a fundamental assumption or requirement, i.e., to be anticipatory, a com-
puting system must have the ability to make decision about its next action based on
prediction about its potential future states. An action in a computing anticipatory
system is a deed performed by the system such that as a result of its functioning a
certain change of state occurs in the system. Because any computing anticipatory
systems must have a decision maker, it is desirable to establish a general methodol-
ogy for decision making in computing anticipatory systems.
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In various computing anticipatory systems, decision making may have two steps:
the first step is to find candidates of the next action, and the second step is to
choose the next action from candidates. To establish a general methodology of
decision making, it is necessary to have a general way to find candidates of the
next actions. We consider that logic-based reasoning about actions is a application
independent general way to find the candidates.

This paper presents a deontic relevant logic approach to reasoning about actions
in computing anticipatory systems. Section 2 discuss why the deontic relevant logic
should be adopted as the fundamental logic to underlie reasoning about actions,
Section 3 presents an action reasoning engine for general purpose we are developing,
Section 4 shows results of a case study, Section 5 discusses our experimental results,
and Section 6 gives conclusions and shows some future works.

2 Reasoning about Actions Based on Deontic Relevant Logic

Reasoning is the process of drawing new conclusions from given premises, which
are already known facts or previously assumed hypotheses to provide some evidence
for the conclusions. Reasoning about actions in a computing anticipatory system is
the process to draw new conclusions about actions in the system from some given
premises, which are already known facts or previously assumed hypotheses concern-
ing states of the system and its external environment. To make reasonable decisions,
we need a right fundamental logic system to provide us with logical validity crite-
rion of reasoning as well as formal representation and specification language. The
fundamental logic to underlie reasoning about actions should satisfy some essential
requirements.

First, as a general logical criterion for the validity of reasoning as well as proving,
the fundamental logic must be able to underlie relevant reasoning as well as truth-
preserving reasoning in the sense of conditional, i.e., for any reasoning based on
the logic to be valid, if its premises are true in the sense of conditional, then its
conclusion must be relevant to the premises and true in the sense of conditional.

Second, the fundamental logic must be able to underlie ampliative reasoning in
the sense that the truth of conclusion of the reasoning should be recognized after
the completion of the reasoning process but not be invoked in deciding the truth of
premises of the reasoning. From the viewpoint to regard reasoning as the process
of drawing new conclusions from given premises, any meaningful reasoning must be
ampliative but not circular and/or tautological.

Third, the fundamental logic must be able to underlie paracomplete reasoning
and paraconsistent reasoning. In particular, the so-called principle of Explosion that
everything follows from a contradiction cannot be accepted by the logic as a valid
principle. In general, our knowledge about a domain as well as a scientific discipline
may be incomplete and/or inconsistent in many ways, i.e., it gives us no evidence
for deciding the truth of either a proposition or its negation, and/or it directly
or indirectly includes some contradictions. Therefore, reasoning with incomplete
and/or inconsistent knowledge is the rule rather than the exception in our everyday
lives and almost all scientific disciplines.
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Finally, the fundamental logic must be able to underlie normative reasoning.
In general, the actual action (as it is) of an system in its running is somewhat
different from the ideal (or normative) action (as it should be) of the system which
is specified by requirements of the system. Therefore, to distinguish between ideal
action and actual action of the system is important to defining what action is illegal
and specifying what should be done if such illegal but possible action occurs.

Classical mathematical logic (CML for short) was established in order to provide
formal language for describing the structures with which mathematicians work, and
the methods of proof available to them; its principal aim is a precise and adequate
understanding of the notion of mathematical proof. CML was established based
on a number of fundamental assumptions. Among them, the most characteristic
one is the classical account of validity that is the logical validity criterion of CML
by which one can decide whether the conclusion of an argument or a reasoning
really does follow from its premises or not in the framework of CML. However,
since the relevance between the premises and conclusion of an argument is not
accounted for by the classical validity criterion, a reasoning based on CML is not
necessarily relevant. On the other hand, in CML the notion of conditional, which
is intrinsically intensional but not truth-functional, is represented by the notion of
material implication, which is intrinsically an extensional truth-function. This leads
to the problem of implicational paradoxes [1, 2].

CML cannot satisfy any of the essential requirements for the fundamental logic to
underlie reasoning about actions because of the following facts: a reasoning based
on CML is not necessarily relevant; the classical truth-preserving property of a
reasoning based on CML is meaningless in the sense of conditional; a reasoning
based on CML must be circular and/or tautological but not ampliative; reasoning
under inconsistency is impossible within the framework of CML [4, 6]. These facts
are also true to those classical conservative extensions or non-classical alternatives
of CML where the classical account of validity is adopted as the logical validity
criterion and the notion of conditional is directly or indirectly represented by the
material implication [4, 6].

Deontic logic is a brunch of philosophical logic to deal with normative notions
such as obligation (ought), permission (permitted), and prohibition (may not), for
underlying normative reasoning [3, 13]. Informally, it can also be considered as
a logic to reason about ideal versus actual states or behavior. It seems to be an
adequate tool to specify, verify, and reason about normative rules. However, clas-
sical deontic logic has the problem of deontic paradox as well as the problem of
implicational paradoxes [18].

Deontic relevant logics (DRLs for short) are obtained by introducing deontic op-
erators and related axiom schemata and inference rules into strong relevant logics
[7, 18]. Deontic relevant logics are free from the problems of classical mathematical
logic and deontic logic, and they can satisfy the all essential requirements for the fun-
damental logic system to underlie reasoning about actions based on following facts:
reasoning based on DRLs is truth-preserving and relevant in the sense of conditional,
reasoning based on DRLs is ampliative, reasoning based on DRLs is paracomplete
and paraconsistent, DRLs has modal notion to deal with normative concepts. For
these reasons, we propose that one should use DRLs as the fundamental logic system
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to underlie reasoning about actions.
We now show that classical mathematical logic is not suitable for reasoning

about actions by a simple example. Let us consider to reason about actions of an
elevator car. We represent an elevator car by individual constant ELEV ATOR,
floors of an building which has ten floors by individual constants F1, F2, · · ·,
F10. We introduce a predicate Idle(e1) to represent ‘elevator car e1 is idle’, a
predicate Call(f1) to represent ‘calling button is pressed at floor f1’, and a pred-
icate Go(e1, f1) to represent ‘elevator car e1 goes to floor f1’. First, we adopt an
following empirical theorem which shows a rule of an action: ∀e1∀f1((Idle(e1) ∧
Call(f1)) ⇒ (O(Go(e1, f1)))). Second, we set the present situation as follows:
Idle(ELEV ATOR), Call(F5). Third, we adopt a deontic relevant logic system
DEc (Axiom and inference rules of DEc exists in Appendix). Then, under on above
setting, we can deduce conclusions based on DEc as follows: Idle(ELEV ATOR) ∧
Call(F5), O(Go(ELEV ATOR, F5)). On the other hand, if we only add a logical
theorem of CML (A∧B) ⇒ (A ⇒ B) into the axioms, then we will deduce a lot of ir-
relevant conditionals such as O(Go(ELEV ATOR, F5)) ⇒ Idle(ELEV ATOR), and
so on. O(Go(ELEV ATOR,F5)) ⇒ Idle(ELEV ATOR) represents ‘If ELEV ATOR
should go to floor F5, then ELEV ATOR is idle’, and this is not correct.

3 An Action Reasoning Engine for General-purpose

To develop anticipatory reasoning reacting systems [5] (ARRSs for short), which
is a kind of computing anticipatory systems, we are developing an action reasoning
engine for general-purpose. Anticipation is the action of taking into possession of
some thing or things beforehand, or acting in advance so as preclude the action of
another. Anticipation can be divided into two parts: the first part is predicting and
second part is decision making. Fig. 1 shows architecture of an ARRS. An ARRS is
composed by an anticipatory reasoning engine (AnRE for short), an action reasoning
engine (AcRE for short), an action chooser and a coordinator with a traditional
reactive subsystem which is application dependent. First part of anticipation is
performed by the AnRE, and second part of anticipation is performed the AcRE
and the action chooser. The AcRE reasons out candidates of the next action from
given predictions which the AnRE reasons out.

We considered requirements of the AcRE for general-purpose as follows:

R1. The AcRE must be able to perform to reasoning based on DRLs. (We already
explained why DRLs should be the fundamental logic for reasoning about
actions in Section 2.)

R2. The AcRE must be able to deduce candidates of the next action in application
independent way because the AcRE should be a general one.

R3. The AcRE must be able to deduce candidates of the next action within an
acceptable time because an anticipatory computing system that cannot satisfy
the requirements of anticipation and timeliness is useless at all in practices in
the real world.
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Fig. 1: An Architecture of an ARRS

For the requirements, we constructed the AcRE. First, we considered indispens-
able data to deduce next action from given predictions. In computing systems, a
next action means to change the present state of system. Therefore data of the
present state of system is indispensable. Furthermore, a next action is decided ac-
cording to certain circumstance in the target domain based on certain rules of action.
Therefore, a model of the target domain and a model of actions is indispensable.
We defined indispensable data for decision making as follows:

• Sensory data describes the present state of a system itself.

• World model describes a model of the target domain, including a model of
a system itself. The model includes particular theories or facts under certain
circumstance.

• Action model describes a model of what to act (i.e., what action should be
select or should not be select).

Second, we constructed the AcRE by FreeEnCal, an automated forward reason-
ing engine with general-purpose [9]. FreeEnCal provides its users with the following
major facilities. For a formal logic system L, a non-empty set P of formulas as
premises, inference rules of logic system L and natural numbers as the degree about
each logic connectives and operators of L, all specified by the user. FreeEnCal can
reason out all logical theorem schema of the fragment Th(θ1,k1,θ2,k2,...,θn,kn)(L), then
we set each degree k1, k2, . . . , kn about θ1, θ2, . . . , θn, which is logical connectives
and operators of L. Furthermore, FreeEnCal can reason out all empirical theorems
which is set each degree j1, j2, . . . , jn about θ1, θ2, . . . , θn with premises P based on
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Th(θ1,k1,θ2,k2,...,θn,kn)(L). The notion of degree of logic connectives and modal opera-
tors as follows: Let θ be an arbitrary n-ary (1 ≤ n) connective or modal operator of
logic L and A be a formula of L, the degree of θ in A, denoted by Dθ(A), is defined
as follows:

1. Dθ(A) = 0 if and only if there is no occurrence of θ in A.

2. If A is in the form θ(a1, a2, . . . , an) where a1, a2, . . . , an are formulas, then
Dθ(A) = max {Dθ(a1), Dθ(a2), . . ., Dθ(an)} +1.

3. If A is in the form σ(a1, a2, . . . , an) where σ is a connective or modal operator
different from θ and a1, a2, . . . , an are formulas, then Dθ(A) = max {Dθ(a1),
Dθ(a2), . . ., Dθ(an)}.

4. If A is in the form QB where B is a formula and Q is the quantifier prefix of
B, then Dθ(A) = Dθ(B).

The notion of degree of logic fragment about logic connectives and modal opera-
tors as follows: Let θ1, θ2, . . . , θn be connectives or modal operators of logic L and
k1, k2, . . . , kn be natural numbers, the fragment of L about θ1, θ2, . . . , θn and their
degrees k1, k2, . . . , kn denoted by Th(θ1,k1,θ2,k2,...,θn,kn), is set of logical theorems of L
which is inductively defined as follows:

1. If A is an axiom of L and Dθ1(A) ≤ k1, Dθ2(A) ≤ k2, . . ., Dθn(A) ≤ kn, then
A ∈ Th(θ1,k1,θ2,k2,...,θn,kn)(L).

2. If A is the result of applying an inference rule of L to some members of
Th(θ1,k1,θ2,k2,...,θn,kn)(L) and Dθ2(A) ≤ k2, . . ., Dθn(A) ≤ kn, then
A ∈ Th(θ1,k1,θ2,k2,...,θn,kn)(L).

3. Nothing else are members of Th(θ1,k1,θ2,k2,...,θn,kn)(L).

Fig. 2 shows reasoning about actions by FreeEnCal. FreeEnCal can perform to
reasoning based on DRLs by using logic fragment of DRLs, and therefore satisfy
requirements R1. Furthermore, FreeEnCal can reason out empirical theorems in ap-
plication independent way if we set all data of reasoning about actions as premise,
and therefore satisfy requirements R2. It must be noted that conclusions of rea-
soning are candidates of next action because the AcRE deduces all possible actions
according to given premises.

4 A Case Study

4.1 Situation of Our Case Study

As a case study, we tried to reason out candidates of the next action of an
elevator car in a multi-floor building with the AcRE. On this building, we set the
occurrence of the fire. The scenario of the fire is as follows:
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Fig. 2: Reasoning about actions by FreeEnCal

• The fire starts on a certain floor, and will spread the upper and the lower floor.
We can already get predictions that how to spread the fire.

• When the fire starts, the elevator system ignores hall calls and takes the each
elevator car for rescue of the occupants.

• The elevator system can still work under this situation, and the running of the
elevator system does not affect the behavior of fire.

4.2 Input Data for the Action Reasoning Engine

We describes the input data of the AcRE in this case as follows:

• Sensory data represents the status of the elevator car and occupants by
following predicates:
ElevatorOn(f1) (The elevator car is on floor f1)
Occupants(f1, n1) (There are n1 occupants on floor f1)

• Predictions represents the future state of the fire by temporal operator F
and some predicates as follows:
F (AllBurnt(f1)) (Floor f1 will be all burnt)
F (StartBurning(f1)) (Floor f1 will start burning)
F (NotBurning(f1)) (Floor f1 will be not burning)

• World model represents relations of distance about each floor by following
predicate:
Far(f1, f2) (Floor f1 is far from floor f2)

• Action model represents rules of actions by deontic operator O and some
predictions as follows:
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1. ∀f1(Occupants(f1, 0) ⇒ ¬(O(Go(f1))))
(If there are no occupants in floor f1, then the elevator car should not go
to floor f1)

2. ∀f1(F (NotBurning(f1)) ⇒ ¬(O(Go(f1))))
(If floor f1 will be not burning, then the elevator car should not go to
floor f1)

3. ∀f1((F (StartBurning(f1)) ∧ ¬(Occupants(f1, 0))) ⇒ O(Go(f1)))
(If floor f1 will be burning and there are occupants, then the elevator car
should go to floor f1)

4. ∀f1∀f2((F (AllBurnt(f1)) ∧ ¬(Occupants(f1, 0)))
⇒ ((ElevatorOn(f2) ∧ ¬(Far(f2, f1))) ⇒ O(Go(f1))))
(If floor f1 will be burnt, there are occupants and the elevator car is not
far from f1 then the elevator car should go to floor)

• DRL logical theorem
We adopt DEc, which is one of deontic relevant logic systems [18], and pick
up following 5 axioms in this case study: (A⇒B) ⇒ ((B⇒C) ⇒ (A⇒C)),
(A⇒(¬B)) ⇒ (B⇒(¬A)), O(A⇒B) ⇒ (OA⇒ OB), OA ⇒ PA and ¬(OA
∧O¬A). We call this set of axioms DEc5 and use two type of logic fragments of
DEc5, Th(⇒,2,∧,1,O,1) (DEc5) and Th(⇒,3,∧,1,O,1)(DEc5). Th(⇒,2,∧,1,O,1) contains
8 logical theorems, and Th(⇒,3,∧,1,O,1)(DEc5) contains 140 logical theorems.

• The degrees of logic connectives and operators
We set each degrees 3, 2, 1 about ⇒,∧, O.

We described these input data as logical formulas and set some parameters, number
of floors (Nf ), number of occupants on each floor (No), floor which a elevator car
on (Fe) and floor which the fire starts (Fs).

4.3 Experimental Results

We executed some experiments with different fragments or different parameters.
First, we executed two experiments with different floor which the fire starts. We

fixed some parameters as follows: Nf = 30, No = 10, Fe = 1 and used fragment
Th(⇒,2,∧,1,O,1)(DEc5). Table 1 shows the results of experiments. In the table, ‘can-
didates’ shows candidates of next actions which the AcRE deduced. From results,
we can say the execution time of the AcRE are largely depends on number of logical
theorems.

Table 1: Results of experiments with different floor which the fire starts.
Fs candidates

10 Go(9), Go(10), Go(11)
20 Go(19), Go(20), Go(21)
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Second, we executed two experiments with different fragments. We fixed some
parameters as follows: Nf = 30, No = 10, Fe = 1, Fs = 10. Table 2 shows the
results of experiments. In this table, ‘candidates’ shows candidates of next actions
which the AcRE deduced, and ‘time’ denotes an execution time of each experiment.
From results, we can say the execution time are largely depends on number of logical
theorems while both of candidates are the same.

Table 2: Results of experiments with different fragments
fragment candidates time

Th(⇒,2,∧,1,O,1)(DEc5) Go(9), Go(10), Go(11) 19s

Th(⇒,3,∧,1,O,1)(DEc5) Go(9), Go(10), Go(11) 928s

Our experimental results show following two facts:

1. The AcRE is useful for decision making in various application area for comput-
ing anticipatory systems because we get candidates of the next action based
on its input data in application independent way.

2. The AcRE takes long time to deduce in this case study. The AcRE should
deduce candidates of the next action as soon as possible because elevator cars
must rescue all occupants which suffer from the fire.

4.4 Discussion

A problem of execution time is main issue of the AcRE. We discuss two solutions
about this problem.

1. Improving FreeEnCal by parallel processing. FreeEnCal has been devel-
oped to improve its performance, and parallel processing approach is proposed
[14]. Therefore, we can expect improving performance of the AcRE if FreeEn-
Cal is improved by this approach.

2. Careful selection of logical theorems we use. From experimental results,
we can say execution time largely depends on number of logical theorems.
Therefore, we should pick up logical theorems we use carefully. If a set of the
logical theorems contain formulas which is not used during reasoning, these
theorems should not be used because they do not deduce new formulas while
takes a lot of execution.

In this case study, we can also get some technical issues about how to use the
AcRE to perform reasoning about actions more effectively. We should solve these
issues to develop ARRS and other computing anticipatory system by the AcRE.

1. We should describe world model and action model more qualita-
tively. In these experiments, we describe formulas about input data each
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floor and each elevator car concretely. However this approach can cause seri-
ous problem of execution time because the more complex situations are, the
larger formulas is needed.

2. We should extend the fundamental logic from deontic relevant logic
to temporal deontic relevant logic. Temporal deontic relevant logic [8] is
extension of deontic relevant logic for temporal reasoning. In this experimen-
tation, we pick up sensory data and predictions of a certain time in the future,
and do not consider that when is the next action done to make decision more
simply. However, all actual actions of an ARRS and other computing system
are somehow dependent on time concept, the fundamental logic underlie these
anticipatory system should deal with temporal concept [8].

5 Concluding Remarks

We have proposed a deontic relevant logic approach to reasoning about actions,
and constructed an action reasoning engine for general-purpose which perform rea-
soning about actions. We also presented some experimental results of a case study
and showed that our approach is useful for general decision making in computing
anticipatory systems. Furthermore from the results, we could make clear some prob-
lems or technical issues of the action reasoning engine. They may be important to
use the action reasoning engine more effectively and develop computing anticipa-
tory system such as anticipatory reasoning-reacting system by the action reasoning
engine.

Some future works are as follows: to improve execution time of the action rea-
soning engine, to study some other cases in order to show some useful examples of
decision making by the action reasoning engine, and to make clear how to choose an
action from candidates of next action deduced by the action reasoning engine and
how to develop decision maker by using the action reasoning engine.
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Appendix: Deontic Relevant Logics

Primitive logical connectives:

⇒: entailment

¬: negation

∧: extensional conjunction

Defined logical connectives:

∨: extensional disjunction, A ∨ B =df ¬(¬A ∧ ¬B)

→: material implication, A → B =df ¬(A ∧ ¬B) or ¬A ∨ B

Deontic operators and intended informal meaning:

O: obligation operator

P: permission operator

Axiom Schemata:

E1: A ⇒ A

E2: (A ⇒ B) ⇒ ((C ⇒ A) ⇒ (C ⇒ B))

E2’: (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C))

E3: (A ⇒ (A ⇒ B)) ⇒ (A ⇒ B)

E3’: (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C))
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E3”: (A ⇒ B) ⇒ ((A ⇒ (B ⇒ C)) ⇒ (A ⇒ C))

E4: (A ⇒ ((B ⇒ C) ⇒ D) ⇒ ((B ⇒ C) ⇒ (A ⇒ D))

E4’: (A ⇒ B) ⇒ (((A ⇒ B) ⇒ C) ⇒ C)

E4”: ((A ⇒ A) ⇒ B) ⇒ B

E4”’: (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (((A ⇒ C) ⇒ D) ⇒ D))

E5: (A ⇒ (B ⇒ C)) ⇒ (B ⇒ (A ⇒ C))

E5’: A ⇒ ((A ⇒ B) ⇒ B)

N1: (A ⇒ (¬A)) ⇒ (¬A)

N2: (A ⇒ (¬B)) ⇒ (B ⇒ (¬A))

N3: (¬(¬A)) ⇒ A

C3: ((A ⇒ B) ∧ (A ⇒ C)) ⇒ (A ⇒ (B ∧ C))

C4: (LA ∧ LB) ⇒ L(A ∧ B), where LA =df (A ⇒ A) ⇒ A

D1: A ⇒ A ∨ B

D2: B ⇒ A ∨ B

D3: (A ⇒ C) ∧ (B ⇒ C) ⇒ (A ∨ B ⇒ C)

DCD: A ∧ (B ∨ C) ⇒ (A ∧ B) ∨ C

C5: (A ∧ A) ⇒ A

C6: (A ∧ B) ⇒ (B ∧ A)

C7: ((A ⇒ B) ∧ (B ⇒ C)) ⇒ (A ⇒ C)

C8: (A ∧ (A ⇒ B)) ⇒ B

C9: ¬(A ∧ ¬A)

C10: A ⇒ (B ⇒ (A ∧ B))

DR1: O(A ⇒ B) ⇒ (OA ⇒ OB)

DR2: OA ⇒ PA

DR3: ¬(OA ⇒ O¬A)

DR4: O(A ∧ B) ⇒ (OA ∧ OB)

DR5: P (A ∧ B) ⇒ (PA ∧ PB)

Inference rules:

⇒E: “from A and A ⇒ B to infer B” (Modus Ponens)

∧I: “from A and B infer A ∧ B” (Adjunction)

∀I: “if A is an axiom, so is ∀xA” (Generalization of axioms)

O-necessitation: “if A is a logical theorem, then so is OA ” (Deontic Generalisation)

Deontic relevant logics are defined as follows, where we use “A|B” to denote any
choice of one from two axiom schemata A and B.

T⇒ = {E1, E2, E2’, E3 | E3” } + ⇒E
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E⇒ = {E1, E2 | E2’, E3 | E3’, E4 | E4’} + ⇒E

R⇒ = {E1, E2 | E2’, E3 | E3’ E5 | E5’} + ⇒E

T⇒¬ = T⇒ + {N1, N2, N3 }
E⇒¬ = E⇒ + {N1, N2, N3 }
R⇒¬ = R⇒ + {N2, N3 }

T = T⇒¬ + {C1 ∼ C3, D1 ∼ D3, DCD } + ∧I

E = E⇒¬ + {C1 ∼ C4, D1 ∼ D3, DCD } + ∧I

R = R⇒¬ + {C1 ∼ C3, D1 ∼ D3, DCD } + ∧I

Tc = T⇒¬ + {C3, C5 ∼ C10} + ∧I

Ec = E⇒¬ + {C3 ∼ C10} + ∧I

Rc = R⇒¬ + {C3, C5 ∼ C10} + ∧I

DTc = Tc + {DR1 ∼ DR5 } + O-necessitation

DEc = Ec + {DR1 ∼ DR5 } + O-necessitation

DRc = Rc + {DR1 ∼ DR4 } + O-necessitation
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