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Abstract

A forward deduction engine is an indispensable component for a computing
system with purposes of prediction and/or discovery. However, there is no practical
forward deduction engine until now. This is perhaps because of the following
two problems. First, conclusions of forward deduction engines based on classical
mathematical logic or its various conservative extensions are not necessarily true
and relevant to the given premises in the sense of conditional. Thus, the users
of the forward deduction engines have to evaluate all conclusions by themselves.
Second, any automated forward deduction is inefficient in the sense that it often
deduces many intermediates, i.e. redundant conclusions or instances of theorems
that have previously deduced or given. Thus a large amount of execution time
and a large amount of main memory are needed to perform automated forward
deduction. In order to implement a practical forward deduction engine, we have
to solve the above two problems.

From the viewpoint of logic, Cheng qualitatively showed that classical mathe-
matical logic, its various classical conservative extensions, and traditional relevant
logics are not suitable to underlying forward deduction for prediction and/or dis-
covery because their logical theorems include a lot of paradoxes of conditional, and
showed that strong relevant logics are more hopeful candidates for the purpose.
But, it is not clear that how ’bad’ the classical mathematical logic, its various clas-
sical conservative extensions, and traditional relevant logics are, and how ’good’
strong relevant logics are, since no quantitative analysis and discussion is reported
until now. In this thesis, we present a quantitative analysis and discussion on
implicational paradoxes in classical mathematical logic with the connective of im-
plication and negation, as the first step of quantitative comparative study between
classical mathematical logic and strong relevant logics. This comparative study
showed that strong relevant logics are quantitatively suitable by far than clas-
sic mathematical logic to underlie forward deduction. The result showed that a
practical forward deduction engine should be based on strong relevant logics.

In order to solve the performance problem of forward deduction engines, we
investigated the relationship between the execution time of forward deduction
engines and the amount of given premises and deduced conclusions. Based on
the investigation, we proposed a parallelization model, which is a kind of master-
slave model, for automated forward deduction, and showed the effectiveness of
the model by implementing an automated forward deduction system for general-
purpose entailment calculus, named EnCal, based on the model. The case study
showed that the execution time of the parallelization version of EnCal gets shorter
in proportion to the increase in the number of processors without depending on
the number of deduced conclusions and given premises. Hence, improving the
performance by parallel processing is effective for forward deduction engines.

In order to show usefulness of forward deduction engines based on strong rel-
evant logics, we investigated some applications of automated forward deduction
based on strong relevant logics. First, towards automating scientific discovery



processes, we investigated how to answer logic puzzles by automated forward de-
duction based on strong relevant logics. In this case study, we got answers to two
logic puzzles by reasoning, but not proving. Our case study showed that auto-
mated forward deduction based on strong relevant logics may be useful as a tool
for automating scientific discovery processes. Second, we investigated the problem
of automated theorem finding in von Neumann-Bernays-Godel set theory (NBG
set theory for short) by automated forward deduction based on strong relevant
logics. In this case study, we deduced some NBG set theory theorems from axioms
of NBG set theory, but no paradoxical theorem was been deduced. Our case study
showed that it is in principle possible to find theorems of the NBG set theory by
automated forward forward deduction based on strong relevant logics. Third, we
investigated what role automated forward deduction based on temporal relevant
logics can play in anticipatory systems with requirements of high reliability and
high security. We showed that the high-performance automated forward deduction
based on temporal relevant logics is necessary to implementation of an anticipatory
reasoning engine. Lastly, we investigated what role automated forward deduction
based on spatial relevant logics can play in geographic information systems. We
proposed a new family of strong relevant logics, named spatial relevant logics, and
showed that the high-performance automated forward deduction based on spatial
relevant logics is necessary to implement a spatial reasoning engine.

This thesis is organized as follows. Chapter 1 presents the background, moti-
vation and purpose of this research. Chapter 2 explains the notions and terminol-
ogy used in this research. Chapter 3 gives a quantitative analysis on implicational
paradoxes in classical mathematical logic from the viewpoint of forward deduction.
Chapter 4 gives an analysis for execution time of forward deduction engines, pro-
poses a parallelization model of automated forward deduction, and then presents
a case study of a parallelization of EnCal. Chapter 5 presents some applications of
automated forward deduction based on strong relevant logics. Concluding remarks
are given in chapter 6.
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Chapter 1

Introduction

1.1 Background and Motivation

Reasoning is the process of drawing new conclusions from some premises which are
known facts and/or assumed hypotheses. A logically valid reasoning is a reasoning
such that its process of drawing new conclusions from premises is justified based on
some logical criterion in order to obtain correct conclusions. Therefore, a reasoning
may be valid on a logical criterion but invalid on another. Automated reasoning is
concerned with the execution of computer programs that assist in solving problems
requiring reasoning.

Knowledge Engineering (KE) is a discipline concerned with constructing and
maintaining knowledge bases to store knowledge of various domains in the real
world and using automated reasoning based on the knowledge to solve problems
in the domains that ordinarily require human reasoning. However, the current
knowledge-based systems cannot reason about those situations and/or problems
that have not been considered by their developers and/or users. A major cause of
this inadequacy is that the systems cannot autonomously generate new and valid
reasoning rules from those existing reasoning rules and facts that are programmed
or inputted in the systems by their developers or users [27, 22].

On the other hand, although from 1950s many automated reasoning system
for theorem proving have been developed and some difficult theorems have been
automatically proved using the systems, at present there is no automated reasoning
system can form some concept and/or find some theorem in a domain that are
completely new and interesting to the scientists working on the domain [43, 44].
The problem of automated theorem finding, i.e. what properties can be identified
to permit an automated reasoning program to find new and interesting theorems,
as opposed to proving conjectured theorems? which was proposed by Wos 1988 as
the thirty-first of 33 open research problems in automated reasoning, is still open
until now [47, 48].

A reactive system is a computing system that maintains an ongoing interac-
tion with its environment as opposed to computing some final value on termination
[28, 29], such as computer operating systems, air plain and train traffic control sys-
tems and so on. Almost all reactive systems only can perform those operations
in response to instructions explicitly issued by users or application programs, but

1



have no ability to do something actively and anticipatorily by themselves. From
the viewpoint of information security engineering, in order to prevent attacks be-
forehand, it is to be desired that a reactive system can detect and predict omens of
attacks anticipatorily and then take some actions to inform its users and perform
some operations to defend attacks by itself. On the other hand, those reactive
systems with highly reliable requirements also need some anticipatory mechanism
to prevent disasters beforehand [12].

All the above applications need automated reasoning which certainly deduces
correct conclusions if all premises are true. Reasoning can be classified into three
forms, deduction, induction and abduction. Deduction is the process of deducing
or drawing conclusions from some general principles already known or assumed.
Induction is the process of inferring some general laws or principles from the obser-
vation of particular instances. Abduction is the process whereby a surprising fact
is made explicable by the application to it of a suitable proposition. The deduc-
tion guarantees that the conclusions deduced in the process are true if all premises
are true, but induction and abduction do not. Thus, automated forward deduc-
tion is an indispensable component for above computing systems with purposes of
prediction and/or discovery.

However, there is no practical forward deduction engine until now. This is
perhaps because of the following two problems. First, conclusions of forward de-
duction engines based on classical mathematical logic or its various conservative
extensions are not necessarily true and relevant to the given premises in the sense
of conditional. Thus, the users of the forward deduction engines have to evaluate
all conclusions by themselves. Second, automated forward deduction is inefficient
in the sense that it often deduces many intermediates, i.e. redundant conclusions or
instances of theorems that have previously deduced or given. Thus a large amount
of execution time and a large amount of main memory are needed to perform au-
tomated forward deduction. In order to implement a practical forward deduction
engine, we have to solve the above two problems.

1.2 Earlier research

The origin of automated forward deduction is a computer program ‘Logic Theory
Machine’ developed by Newell, Shaw and Simon in 1957 [16]. The purpose of
that program is to emulate the process by which a person might seek proofs in
the propositional calculus of Principia Mathematica written by Whitehead and
Russell. Its algorithm is “British Museum algorithm” by which all possible proofs
are generated until one leading to the desired result is reached. Logic Theory
Machine was demonstrated on fifty-two theorems from the propositional calculus
in Principia Mathematica; it proved thirty-eight of them [16]. However, from the
viewpoint of computational complexity, it is impossible to process the large amount
of well-formed formulas deduced by Logic Theory Machine, because Logic Theory
Machine is based on classical mathematical logic. Consequently, the researchers
at the time regarded this approach as the impossible one, and after that no one
has researched on this direction.
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On the other hand, in 1958 ∼ 1960, Hao Wang programmed a decision pro-
cedure to prove all of the theorems which the Logic Theory Machine proved and
more 350 theorems of Principia Mathematica, and his program could prove all
of theorems of the Principia Mathematica of first-order logic with equality [16].
In 1965, Abraham Robinson showed how to combine unification and satisfiability
checking into a single rule called “resolution” [16]. According above two successes,
the main direction of automated deduction work is based on resolution and back-
ward deduction, up to now. However, both of them are method for proving, but
not reasoning.

However, the failure of Logic Theory Machine is caused by classical mathe-
matical logic rather than forward deduction. From the viewpoint of conditional,
classical mathematical logic, CML for short, and its various conservative exten-
sions have the well-known “implicational paradox problem.” In CML, the notion
of conditional is represented by the truth-functional extensional notion of material
implication (denoted by → in this thesis) that is defined as A → B =df ¬(A∧¬B)
or A → B =df ¬A∨B. However, the material implication is intrinsically different
from the notion of conditional in meaning (semantics).

Historically, implicational paradoxes have been studied many years. The main
aim of Lewis’s work beginning in 1912 on the establishment of modern modal
logic was to find a satisfactory theory of implication which is better than CML in
that it can avoid those implicational paradoxes, though his plan was not success-
ful in the sense that some implicational paradoxes in terms of strict implication
remained in modal logic [1, 2, 41]. Sugihara 1955 provided the first general char-
acterization of implicational paradoxes [1]. Ackermann 1956 proposed the concept
of “Rigorous implication” [1, 2, 41]. During 1957 ∼ 1959, Von wright, Geach , and
Smiley suggested some informal criteria for the notion of entailment, i.e. so-called
“Wright-Geach-Smiley criterion” for entailment [1]. However, it is hard until now
to know exactly how to formally context of logic. During the 1950s ∼ 1970s, An-
derson and Belnap extended the work of Ackermann and proposed variable-sharing
as a necessary but not sufficient formal condition for the relevance between the
antecedent and consequent of a logical entailment [1, 2, 41].

Relevant logics, RL for short, were constructed during the 1950s ∼ 1970s in
order to find a mathematically satisfactory way of grasping the notion of entail-
ment [1, 2, 19, 41]. The first one of such logics is Ackermann’s logic system Π′.
Anderson and Belnap modified and reconstructed Ackermann’s logic system into
an equivalent logic system, called “system E of entailment.” Belnap proposed a
logic system, called “system R of relevant implication.” Another important rele-
vant logic system is “system T of ticket entailment” or “system T of entailment
shorn of modality” which is proposed by Anderson and Belnap. All those logic
systems are usually called “entailment logic,” “relevance logic,” or “relevant logic”
[1, 2, 19, 41].

In 1991, Cheng pointed out the new paradoxes in above relevant logics, and
proposed strong relevant logics, SRL for short, which do not include the paradoxes
[4, 7]. Cheng also showed that an entailment calculus based on the paradox-free
relevant logics can underlie reasoning rule generation in knowledge-based systems
and automated theorem finding, and proposed an automated forward deduction
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system for general-purpose entailment calculus, named EnCal [6]. EnCal supports
automated forward deduction for entailment calculi based on SRL as well as other
logics.

1.3 Structure of this thesis

In this thesis, we investigate two problems at first: logic systems to underlie auto-
mated forward deduction and the performance of automated forward deduction,
in order to implement a practical forward deduction engine.

From the viewpoint of logic, Cheng qualitatively showed that CML, its various
classical conservative extensions, and RL are not suitable to underlying forward
deduction for prediction and/or discovery because their logical theorems include a
lot of paradoxes of conditional, and showed that SRL are more hopeful candidates
for the purpose [4, 7]. But, it is not clear that how ’bad’ the CML, its various
classical conservative extensions, and RL are, and how ’good’ SRL are, since no
quantitative analysis and discussion is reported until now. In this thesis, we present
a quantitative analysis and discussion on implicational paradoxes in CML with the
connective of implication and negation, as the first step of quantitative comparative
study between CML and SRL.

In order to solve the performance problem of the forward deduction engines,
we investigate the relationship between the execution time of forward deduction
engines and the amount of given premises and deduced conclusions. Based on the
investigation, we propose a parallelization model, which is a kind of master-slave
model, for automated forward deduction, and show the effectiveness of that model
by implementing EnCal, based on the model.

In order to show usefulness of forward deduction engines based on SRL, we in-
vestigate some applications of automated forward deduction based on SRL. First,
towards automating scientific discovery processes, we investigate how to answer
logic puzzles by automated forward deduction based on SRL. Second, we investi-
gate the problem of automated theorem finding in von Neumann-Bernays-Godel
set theory (NBG set theory for short) by automated forward deduction based on
SRL. Third, we investigate what role automated forward deduction based on tem-
poral relevant logics can play in anticipatory systems with requirements of high
reliability and high security. Lastly, we investigate what role automated forward
deduction based on spatial relevant logics can play in geographic information sys-
tems.

This thesis is organized as follows. Chapter 2 explains the notions and termi-
nology used in this research. Chapter 3 gives a quantitative analysis of paradoxes
of implication in CML from the viewpoint of a logic system to underlie automated
forward deduction. Chapter 4 gives an analysis for execution time of forward de-
duction engines, proposes a parallelization model of automated forward deduction,
and then presents a case study of a parallelization of EnCal. Chapter 5 presents
some applications of automated forward deduction based on strong relevant logics.
Concluding remarks are given in chapter 6.
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Chapter 2

Reasoning by forward deduction
based on logics and its
automation

2.1 Basic notions

Reasoning is the process of drawing new conclusions from given premises, which are
already known facts or previously assumed hypotheses (Note that how to define
the notion of ‘new’ formally and satisfactorily is still a difficult open problem
until now). Therefore, reasoning is intrinsically ampliative, i.e. it has the function
of enlarging or extending some things, or adding to what is already known or
assumed. In general, a reasoning consists of a number of arguments (or inferences)
in some order. An argument is a set of statements (or declarative sentences) of
which one statement is intended as the conclusion, and one or more statements,
called ‘premises,’ are intended to provide some evidence for the conclusion. An
argument is a conclusion standing in relation to its supporting evidence. In an
argument, a claim is being made that there is some sort of evidential relation
between its premises and its conclusion: the conclusion is supposed to follow from
the premises, or equivalently, the premises are supposed to entail the conclusion.
Therefore, the correctness of an argument is a matter of the connection between
its premises and its conclusion, and concerns the strength of the relation between
them (Note that the correctness of an argument depends neither on whether the
premises are really true or not, nor on whether the conclusion is really true or not).
Thus, there are some fundamental questions: What is the criterion by which one
can decide whether the conclusion of an argument or a reasoning really does follow
from its premises or not? Is there the only one criterion, or are there many criteria?
If there are many criteria, what are the intrinsic differences between them? It is
logic that deals with the validity of argument and reasoning in general.

A logically valid reasoning is a reasoning such that its arguments are justified
based on some logical validity criterion provided by a logic system in order to
obtain correct conclusions (Note that here the term ‘correct’ does not necessarily
mean ‘true’.). Today, there are so many different logic systems motivated by
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various philosophical considerations. As a result, a reasoning may be valid on one
logical validity criterion but invalid on another.

Proving is the process of finding a justification for an explicitly specified state-
ment from given premises, which are already known facts or previously assumed
hypotheses. A proof is a description of a found justification. A logically valid
proving is a proving such that it is justified based on some logical validity criterion
provided by a logic system in order to obtain a correct proof.

The most intrinsic difference between reasoning and proving is that the former
is intrinsically prescriptive and predictive while the latter is intrinsically descrip-
tive and non-predictive. The purpose of reasoning is to find some new conclusion
previously unknown or unrecognized, while the purpose of proving is to find a jus-
tification for some specified statement previously given. Proving has an explicitly
given target as its goal while reasoning does not.

Discovery is the process to find out or bring to light of that which was previously
unknown. For any discovery, both the discovered thing and its truth must be
unknown before the completion of discovery process. Since reasoning is the only
way to draw new conclusions from given premises, there is no discovery process
that does not invoke reasoning.

Logic is a special discipline which is considered to be the basis for all other
sciences, and therefore, it is a science prior to all others, which contains the ideas
and principles underlying all sciences [23, 46]. Logic deals with what entails what or
what follows from what, and aims at determining which are the correct conclusions
of a given set of premises, i.e. to determine which arguments are valid. Therefore,
the most essential and central concept in logic is the logical consequence relation
that relates a given set of premises to those conclusions, which validly follow from
the premises.

In general, a formal logic system L consists of a formal language, called the
object language and denoted by F (L), which is the set of all well-formed formulas
of L, and a logical consequence relation, denoted by meta-linguistic symbol `L ,
such that P ⊆ F (L) and c ∈ F (L), P `L c means that within the frame work of
L, c is valid conclusion of premises P , i.e. c validly follows from P . For a formal
logic system (F (L), `L), a logical theorem t is a formula of L such that φ `L t
where φ is empty set. We use Th(L) to denote the set of all logical theorems of L.
Th(L) is completely determined by the logical consequence relation `L. According
to the representation of the logical consequence relation of a logic, the logic can be
represented as a Hilbert style formal system, a Gentzen natural deduction system,
a Gentzen sequent calculus system, or other type of formal system.

Let (F (L), `L) be a formal logic system and P ⊆ F (L) be a non-empty set
of sentences (i.e. closed well-formed formulas). A formal theory with premises P
based on L, called a L-theory with premises P and denoted by TL(P ) , is defined
as TL(P ) =df Th(L) ∪ The

L(P ), and The
L(P ) =df {et|P `L et and et 6∈ Th(L)}

where Th(L) and The
L(P ) are called the logical part and the empirical part of

the formal theory , respectively, and any element of The
L(P ) is called an empirical

theorem of the formal theory.
In the literature of mathematical, natural, social, and human sciences, it is

probably difficult, if not impossible, to find a sentence form that is more gener-
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ally used for describing various definitions, propositions, and theorems than the
sentence form of ‘if ... then ...’. In logic, a sentence in the form of ‘if ... then ...’
is usually called a conditional proposition or simply conditional which states that
there exists a relation of sufficient condition between the ‘if’ part and the ‘then’
part of the sentence. Scientists always use conditionals in their descriptions of var-
ious definitions, propositions, and theorems to connect a concept, fact, situation
or conclusion to its sufficient conditions. The major work of almost all scientists is
to discover some sufficient condition relations between various phenomena, data,
and laws in their research fields.

In general, a conditional must concern two parts which are connected by the
connective ‘if ... then ...’ and called the antecedent and the consequent of that
conditional, respectively. The truth of a conditional depends not only on the truth
of its antecedent and consequent but also, and more essentially, on a necessarily
relevant and conditional relation between them. The notion of conditional plays
the most essential role in reasoning because any reasoning form must invoke it,
and therefore, it is historically always the most important subject studied in logic
and is regarded as the heart of logic [1].

When we study and use logic, the notion of conditional may appear in both
the object logic (i.e. the logic we are studying) and the meta-logic (i.e. the logic
we are using to study the object logic). In the object logic, there usually is a
connective in its formal language to represent the notion of conditional, and the
notion of conditional, usually represented by a meta-linguistic symbol, is also used
for representing a logical consequence relation in its proof theory or model theory.
On the other hand, in the meta-logic, the notion of conditional, usually in the
form of natural language, is used for defining various meta-notions and describing
various meta-theorems about the object logic.

From the viewpoint of object logic, there are two classes of conditionals [11].
One class is empirical conditionals and the other class is logical conditionals. For
a logic, a conditional is called an empirical conditional of the logic if its truth-
value, in the sense of that logic, depends on the contents of its antecedent and
consequent and therefore cannot be determined only by its abstract form (i.e.
from the viewpoint of that logic, the relevant relation between the antecedent and
the consequent of that conditional is regarded to be empirical); a conditional is
called a logical conditional of the logic if its truth-value, in the sense of that logic,
depends only on its abstract form but not on the contents of its antecedent and
consequent, and therefore, it is considered to be universally true or false (i.e. from
the viewpoint of that logic, the relevant relation between the antecedent and the
consequent of that conditional is regarded to be logical). A logical conditional
that is considered to be universally true, in the sense of that logic, is also called
an entailment of that logic. Indeed, the most intrinsic difference between various
different logic systems is to regard what class of conditionals as entailments.

An entailment calculi is a formalization of a logical system L such that the
notion of conditional (entailment) is represented in L by a primitive connective
and all logical theorems of L are represented in the form of entailment.

For a formal logic system where the notion of conditional is represented by
primitive connective entailment ‘⇒’, a formula is called a zero degree formula if
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and only if there is no occurrence of ‘⇒’ in it; a formula of the form ‘A ⇒ B’
is called a first degree conditional if and only if both A and B are zero degree
formula; a formula A is called a first degree formula if and only if it satisfies one
of the following conditions [11]:

1. A is a first degree conditional,

2. A is in the form +B (+ is a one-place connective such as negation and so
on) where B is a first degree formula,

3. A is in the form B ∗ C, (∗ is a non-implicational two-place connective such
as conjunction or disjunction and so on), where both of B and C is a first
degree formulas, or one of B and C are a first degree formula and the another
is a zero degree formula.

Let k be a natural number. A formula of the form ‘A ⇒ B’ is called a kth degree
conditional if and only if both A and B are (k − 1)th degree formulas, or either
formula A or B is a (k − 1)th degree formula and the another is a jth(j < k − 1)
degree formula; a formula is called kth degree formula if and only if it satisfies one
of the following conditions [11]:

1. A is a kth degree conditional,

2. A is in the form +B (+ is a one-place connective such as negation and so
on) where B is a kth degree formula,

3. A is in the form B ∗ C, (∗ is a non-implicational two-place connective such
as conjunction or disjunction and so on), where both of B and C is a kth

degree formulas, or one of B and C are a kth degree formula and the another
is a jth(j < k) degree formula.

Let (F (L), `L) be a formal logic system and k be a natural number. The kth

degree fragment of L, denoted by Thk(L) , is a set of logical theorems of L that is
inductively defined as follows (in the terms of Hilbert-style formal systems) [11]:

1. if A is a jth(j ≤ k) degree formula and an axiom of L, then A ∈ Thk(L),

2. if A is a jth(j ≤ k) degree formula that is the result of applying an inference
rule of L to some members of Thk(L), then A ∈ Thk(L),

3. nothing else is a member of Thk(L), i.e. only those obtained from repeated
applications of 1. and 2. are members of Thk(L).

Let (F (L), `L) be a formal logic system, P ⊂ F (L), and k and j be two
natural numbers. A formula A is said to be jth-degree-deducible from P based
on Thk(L) if and only if there is an finite sequence of formulas f1, . . . , fn such
that fn = A and for all i(i ≤ n) (1) fi ∈ Thk(L), or (2) fi ∈ P , or (3) fi whose
degree is not higher than j is the result of applying an inference rule to some
members fj1 , . . . , fjm(j1, . . . , jm < i) of the sequence. If P 6= φ, then the set of all
formulas which are jth-degree-deducible from P based on Thk(L) is called the jth

degree fragment of the formal theory with premises P based on Thk(L), denoted
by T j

Thk(L)(P ) [11].
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2.2 EnCal: an automated forward deduction sys-

tem for general-purpose entailment calculus

Cheng proposed an automated forward deduction system for general-purpose en-
tailment calculus, named EnCal [6]. It supports an automated forward deduction
for entailment calculi based on SRL as well as other logics. It provides its users
with the following major facilities. For a formal logic system L which may be a
propositional logic, a first-order predicate logic, or a second-order predicate logic,
a non-empty set P of formulas as premises, inference rules of logic system L and
natural number k and j (usually, k, j ≤ 5) as limit of degree which is the degree of
nested entailment (denoted by ‘⇒’ in this thesis), all specified by the user, EnCal
can

1. reason out all logical theorem schemata of the Thk(L),

2. verify whether or not a formula is a logical theorem schema of the Thk(L),
if yes, then give the proof,

3. reason out all empirical theorems of the jth degree fragment of L-theory with
premises P based on Thk(L),

4. verify whether or not a formula is an empirical theorem of the jth degree
fragment of L-theory with premises P based on Thk(L), if yes, then give the
proof [6].

EnCal consists of the following major parts.

• EnCal-P: EnCal-P is a pattern-driven implementation of the inference rule
of Modus Ponens for propositional logics. It can reason out logical theorem
schemata of the kth degree fragment of L.

• EnCal-Q: EnCal-Q is an extension of EnCal-P to deal with first order predi-
cate logics. It has the ability to deal with individual quantifiers and variables.
EnCal-Q can reason out logical theorem schemata of the kth degree fragment
of L.

• EnCal-Q2: EnCal-Q2 is an extension of EnCal-Q to deal with second order
predicate logics. It has the ability to deal with predicate quantifiers and
variables as well as individual quantifiers and variables. It can reason out
logical theorem schemata of the kth degree fragment of L.

• EnCal-E: In contrast to the EnCal-P and EnCal-Q , which are tools for
reasoning about logical entailments, EnCal-E is a tool for reasoning out
empirical entailments with logical theorem schema generated by EnCal-P
and EnCal-Q.

• EnCal-E2: EnCal-E2 is an extension of EnCal-E to deal with second order
theories.

• EnCal-T: EnCal-T is a tool kit for the user to edit input data for EnCal,
transform the reasoning results into various forms specified by the user, and
provide the user with various set operations on the reasoning results.
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EnCal-P

EnCal-Q

EnCal-Q2Axioms

Inference rules

Logical theorems

EnCal-E

Empirical 
 thorems

Inference rules
    New
knowledge

Reasoning Engine
Data flow

Figure 2.1: The relationship among the parts of EnCal

Figure 2.1 presents the relationship among the parts of EnCal. These parts
were implemented by Cheng with LISP [6]. EnCal-P, EnCal-Q, EnCal-E were
also implemented by Programming Language C, or C++ by author and et al.
[26, 35, 34]
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Chapter 3

A quantitative analysis of
implicational paradoxes in
classical mathematical logics

3.1 Introduction

Forward reasoning and/or deduction based on some fundamental logic system is in-
dispensable to any computing system to discover new knowledge or predict future
incidents. In principle, any logic system can be used as a fundamental logic to un-
derlie forward reasoning and/or deduction processes with a certain purpose, if the
logical consequence relation defined by the logic system is correspond or suitable
to the purpose of the reasoning and/or deduction processes. However, from the
viewpoint of practice, only those logic systems, which define logical consequence
relations correspond or suitable to the purposes of reasoning and/or deduction
processes required by problem solving in the real world, should be used as the
underlying logic systems for the forward reasoning and/or deduction processes.

From the viewpoint of logic, Cheng qualitatively showed that classical math-
ematical logic, CML for short, its various classical conservative extensions, and
traditional relevant logics, RL for short, are not suitable to underlying forward
deduction for prediction and/or discovery because their logical theorems include
a lot of paradoxes of conditional, and showed that strong relevant logics, SRL for
short, are more hopeful candidates for the purpose [4, 7]. But, it is not clear that
how ’bad’ the CML, its various classical conservative extensions, and RL are, and
how ’good’ SRL are, since no quantitative analysis and discussion is reported until
now.

In order to show that SRL are quantitatively suitable to underlying forward de-
duction, as the first step, we quantitatively investigate the implicational paradoxes
in CML.

The rest of this chapter is organized as follows: section 3.2 gives a very simple
explanation about CML and implicational paradoxes. Section 3.3 gives a very
simple explanation about RL and SRL. Section 3.4 gives the method quantitative
analysis on implicational paradoxes in CML, and section 3.5 shows an quantita-
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tive analysis on implicational paradoxes in CML. Section 3.6 discusses about our
analysis. Summary is given in section 3.7.

3.2 Classical mathematical logic and its various

extensions

CML was established in order to provide formal languages for describing the struc-
tures with which mathematicians work, and the methods of proof available to
them; its principal aim is a precise and adequate understanding of the notion of
mathematical proof.

In CML, the notion of conditional, which is intrinsically intensional but not
truth-functional, is represented by the truth-functional extensional notion of ma-
terial implication (denoted by → in this thesis) that is defined as A → B =df

¬(A∧¬B) or A → B =df ¬A∨B, where ∧, ∨, and ¬ denote the notion of conjunc-
tion, disjunction, and negation, respectively. However, the material implication is
intrinsically different from the notion of conditional in meaning (semantics). It
is no more than an extensional truth-function of its antecedent and consequent
but does not require that there is a necessarily relevant and conditional relation
between its antecedent and consequent, i.e. the truth-value of the formula A → B
depends only on the truth-values of A and B, though there could exist no nec-
essarily relevant and conditional relation between A and B. It is this intrinsic
difference in meaning between the notion of material implication and the notion
of conditional that leads to the well-known “implicational paradox problem” in
CML. The problem is that if one regards the material implication as the notion
of conditional and regards every logical theorem of CML as an entailment or valid
reasoning form, then a great number of logical axioms and logical theorems of
CML, such as A → (B → B), B → (¬A∨A), and so on, present some paradoxical
properties and therefore they have been referred to in the literature as “implica-
tional paradoxes” [1, 2, 20, 30, 41]. Because all implicational paradoxes are logical
theorems of any CML-theory TCML(P ), for a conclusion of a reasoning from a set
P of premises based on CML, we cannot directly accept it as a correct conclusion
in the sense of conditional, even if each of the given premises is regarded to be true
and the conclusion can be regarded to be true in the sense of material implication.

Note that any classical conservative extension or non-classical alternative of
CML where the classical account of validity is adopted as the logical validity
criterion and the notion of conditional is directly or indirectly represented by the
material implication has the similar problems as the above problems in CML [7].

Consequently, in the framework of CML, its various classical conservative ex-
tensions, even if a reasoning is valid in the sense of CML, neither the necessary
relevance between its premises and conclusion nor the truth of its conclusion in
the sense of conditional can be guaranteed necessarily.
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3.3 Relevant logics

RL were constructed during the 1950s in order to find a mathematically satisfac-
tory way of grasping the elusive notion of relevance of antecedent to consequent in
conditionals, and to obtain a notion of implication which is free from the so-called
“paradoxes” of material and strict implication [1, 2, 20, 30, 41]. Some major RL
are “system E of entailment”, “system R of relevant implication”, and “system T
of ticket entailment.” Anderson and Belnap proposed variable-sharing as a nec-
essary but not sufficient formal condition for the relevance between the antecedent
and consequent of an entailment. The underlying principle of these relevant log-
ics is the relevance principle , i.e. for any entailment provable in E, R, or T, its
antecedent and consequent must share a sentential variable. Variable-sharing is
a formal notion designed to reflect the idea that there be a meaning-connection
between the antecedent and consequent of an entailment [1, 2, 20, 30, 41].

However, although RL have rejected those paradoxes of implication, there still
exist some logical axioms or theorems in the logics, which are not so natural in the
sense of conditional. Such logical axioms or theorems, for instance, are (A∧B) ⇒
A, A ⇒ (A∨B), and so on, where ⇒ denotes the primitive intensional connective in
the logics to represent the notion of conditional. Cheng named these logical axioms
or theorems “conjunction-implicational paradoxes” and “disjunction-implicational
paradoxes” [7].

In order to establish a satisfactory logic calculus of conditional to underlie
relevant reasoning, the present Cheng has proposed some SRL , named Rc, Ec,
and Tc [7, 10]. The logics require that the premises of an argument represented by
a conditional include no unnecessary and needless conjuncts and the conclusion of
that argument includes no unnecessary and needless disjuncts. As a modification
of R, E, and T, Rc, Ec, and Tc reject all conjunction-implicational paradoxes and
disjunction-implicational paradoxes in R, E, and T, respectively. Since the SRL
are free of not only implicational paradoxes but also conjunction-implicational
and disjunction-implicational paradoxes, in the framework of SRL, if a reasoning
is valid, then both the relevance between its premises and its conclusion and the
validity of its conclusion in the sense of conditional can be guaranteed in a certain
sense of strong relevance.

The logical connectives, axiom schemata, and inference rules of SRL are as
follows [7, 10]:

Primitive logical connectives:

⇒: entailment

¬: negation

∧: extensional conjunction

Defined logical connectives:

⊗: intensional conjunction, A ⊗ B =df ¬(A ⇒ ¬B)

⊕: intensional disjunction, A ⊕ B =df ¬A ⇒ B

⇔: intensional equivalence, A ⇔ B =df (A ⇒ B) ⊗ (B ⇒ A)
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∨: extensional disjunction, A ∨ B =df ¬(¬A ∧ ¬B)

→: material implication, A → B =df ¬(A ∧ ¬B) or ¬A ∨ B

↔: extensional equivalence, A ↔ B =df (A → B) ∧ (B → A)

Quantifiers:

∀: universal quantifier

∃: existential quantifier

These quantifiers are not independent and can be defined as follows:

∀xA =df ¬∃x¬A,

∃xA =df ¬∀x¬A.

Axiom schemata

E1: A ⇒ A

E2: (A ⇒ B) ⇒ ((C ⇒ A) ⇒ (C ⇒ B))

E2’: (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C))

E3: (A ⇒ (A ⇒ B)) ⇒ (A ⇒ B)

E3’: (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C))

E3”: (A ⇒ B) ⇒ ((A ⇒ (B ⇒ C)) ⇒ (A ⇒ C))

E4: (A ⇒ ((B ⇒ C) ⇒ D) ⇒ ((B ⇒ C) ⇒ (A ⇒ D))

E4’: (A ⇒ B) ⇒ (((A ⇒ B) ⇒ C) ⇒ C)

E4”: ((A ⇒ A) ⇒ B) ⇒ B

E4”’: (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (((A ⇒ C) ⇒ D) ⇒ D))

E5: (A ⇒ (B ⇒ C)) ⇒ (B ⇒ (A ⇒ C))

E5’: A ⇒ ((A ⇒ B) ⇒ B)

N1: (A ⇒ (¬A)) ⇒ (¬A)

N2: (A ⇒ (¬B)) ⇒ (B ⇒ (¬A))

N3: (¬(¬A)) ⇒ A

C1: (A ∧ B) ⇒ A

C2: (A ∧ B) ⇒ B

C3: ((A ⇒ B) ∧ (A ⇒ C)) ⇒ (A ⇒ (B ∧ C))

C4: (LA ∧ LB) ⇒ L(A ∧ B), where LA =df (A ⇒ A) ⇒ A

D1: A ⇒ (A ∨ B)

D2: B ⇒ (A ∨ B)

D3: ((A ⇒ C) ∧ (B ⇒ C)) ⇒ ((A ∨ B) ⇒ C)

DCD: (A ∧ (B ∨ C)) ⇒ ((A ∧ B) ∨ C)

C5: (A ∧ A) ⇒ A
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C6: (A ∧ B) ⇒ (B ∧ A)

C7: ((A ⇒ B) ∧ (B ⇒ C)) ⇒ (A ⇒ C)

C8: (A ∧ (A ⇒ B)) ⇒ B

C9: ¬(A ∧ ¬A)

C10: A ⇒ (B ⇒ (A ∧ B))

IQ1: ∀x(A ⇒ B) ⇒ (∀xA ⇒ ∀xB)

IQ2: (∀xA ∧ ∀xB) ⇒ ∀x(A ∧ B)

IQ3: ∀xA ⇒ A[t/x] (if x may appear free in A and t is free for x in A, i.e. free
variables of t do not occur bound in A)

IQ4: ∀x(A ⇒ B) ⇒ (A ⇒ ∀xB) (if x does not occur free in A)

IQ5: ∀x1 · · · ∀xn(((A ⇒ A) ⇒ B) ⇒ B) (0 ≤ n)

Inference Rules:

⇒E: “from A and A ⇒ B to infer B” (Modus Ponens)

∧I: “from A and B infer A ∧ B” (Adjunction)

∀I: “if A is an axiom, so is ∀xA” (Generalization of axioms)

Thus, various relevant logic systems may now defined as follows, where we use
‘A | B’ to denote any choice of one from two axiom schemata A and B.

Te = {E1, E2, E2’, E3| E3” } + ⇒E

Ee = {E1, E2 | E2’, E3 | E3’, E4 | E4’} + ⇒E

Ee = {E2’, E3, E4”} + ⇒E

Ee = {E1, E3, E4”’} + ⇒E

Re = {E1, E2 | E2’, E3 | E3’, E5 | E5’} + ⇒E

Ten = Te + {N1, N2, N3 }
Een = Ee + {N1, N2, N3 }
Ren = Re + {N2, N3 }

T = Ten + {C1 ∼ C3, D1 ∼ D3, DCD } + ∧I

E = Een + {C1 ∼ C4, D1 ∼ D3, DCD } + ∧I

R = Ren + {C1 ∼ C3, D1 ∼ D3, DCD } + ∧I

Tc = Ten + {C3, C5 ∼ C10}
Ec = Een + {C3 ∼ C10}
Rc = Ren + {C3, C5 ∼ C10}

TcQ = Tc + {IQ1 ∼ IQ4 } + ∀I

EcQ = Ec + {IQ1 ∼ IQ5 } + ∀I

RcQ = Rc + {IQ1 ∼ IQ4 } + ∀I
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Here, Te, Ee, and Re are the purely implicational fragments of T, E, and
R, respectively, and the relationship between Ee and Re is known as Re = Ee +
A ⇒ LA; Ten, Een, and Ren are the implication-negation fragments of T, E, and
R, respectively; TcQ, EcQ, and RcQ are predicate strong relevant logics proposed
by Cheng [11].

The strong relevance principle, SRP for short, is the one of principles in SRL
[45]: every sentential variable in a well-formed formula A occurs at least once as

an antecedent part and at least once as a consequent part. The definition of an
antecedent part and a consequent part is as follows, let A, B and C be well-formed
formulas,

1. A is a consequent part of A,

2. if ¬B is a consequent part (antecedent part) of A, then B is an antecedent
part (consequent part) of A,

3. if B ⇒ C is a consequent part (antecedent part) of A, then B is an antecedent
part (consequent part) of A, and C is consequent (antecedent part) of A,

4. if B ∧C or B ∨C is a consequent part (antecedent part) of A, then both B
and C are consequent parts (antecedent parts) of A.

If A is a theorem of Rc, Ec, or Tc, then A satisfies SRP [45]. If A is a theorem
of Ren, Een, or Ten, then A satisfies SRP [1]. On the other hand, implicational
paradoxes in CML do not satisfy SRP, because SRP is a principle which formally
guarantees the relationship between antecedent and consequent. Therefore, we can
distinguish implicational paradoxes from axioms and logical theorems in CML by
whether a well-formed formula satisfies SRP or not.

3.4 The method of quantitative analysis

The purpose of this thesis is to investigate implicational paradoxes in CML, we
therefore focus on the axiomatic system of CML with only implication and nega-
tion, and discuss about implicational paradoxes on the schemata of well-formed
formulas [25].

In this thesis, a schema of a well-formed formula is defined as the formula
A ∈ F (L) obtained by applying following operation to the well-formed formula.

Operation

1. Let {O} = {o1, o2, · · ·} denote a set of symbols with order relation which is
not included the vocabulary of logic system L.

2. i ← 1

3. Continue following operations until all sentential variables in a well-formed
formula A are replaced with elements of {O}.

16



Satisfying SRP

Logical 
theorems of Ren

Logical 
theorems of Ten

Logical 
theorems of Een

Axio
ms

Logical theorems of CML

Schemata with implication and negation

α

β

Figure 3.1: The relationship among sets of schemata

(a) Replace all sentential variables, which are ith kind from the head of the
A, with a ith element of {O}.

(b) i ← i + 1.

In this thesis, ‘pattern variables’ denotes the elements of {O}.
A schema of a well-formed formula A is a kth degree schema if and only if a

certain well-formed formula B is a kth degree formula if A is obtained from B by the
above operation. A schema A is a kth degree axiom schema or a kth degree logical
theorem schema of a logic system L if and only if a certain well-formed formula
B is a kth degree formula, and is also an axiom or a logical theorem of L if A is
obtained from B by the above operation. kth degree schemata fragment of formal
logic system L is a set which includes all jth degree schemata of L (1 ≤ j ≤ k), and
denoted by Fk(L). kth degree logical theorem schemata fragment of formal logic
system L is the set which consists of all jth degree axiom schemata and logical
theorem schemata of L (1 ≤ j ≤ k), and denoted by Thk(L) . Note that Thk(L)
is a different set of Thk(L) which is defined at chapter 2. FSk(CML) denotes the
set which consists of all schemata satisfying SRP in Fk(CML).

Figure 3.1 shows the relationship among a set of logical theorems in CML,
a set of logical theorems satisfying SRP in CML, and sets of logical theorems
in Ren, Een, or Ten. Note that the vocabulary of Ren, Een, and Ten has not
only entailment ⇒ as a primitive logical connective, but also material implication
→ as a defined logical connective [7]. Actually, in viewpoint from syntax, the
relationship between well-formed formulas of RL, denoted by WFFRL, and that of
CML, denoted by WFFCML, is

WFFCML ⊂ WFFRL. (3.1)

However, in this thesis, we regard material implication → in CML and entailment
⇒ in RL as a same connective to represent the notion of conditional.

17



Fk(CML) is as same as Fk(Ren), Fk(Een), and Fk(Ten). Let ThSk(CML)
denote the set which is FSk(CML) ∧ Thk(CML). IPk(CML) denotes the set
of all implicational paradoxes in Thk(CML), i.e. IPk(CML) = Thk(CML) −
ThSk(CML). There is following relationship among Thk(CML), ThSk(CML),
Thk(Ren), Thk(Een), and Thk(Ten):

Thk(Ten) ⊂ Thk(Een) ⊂ Thk(Ren) ⊆ ThSk(CML) ⊂ Thk(CML). (3.2)

Note that there is no report about whether Thk(Ren) and ThSk(CML) are same
or not. We can know how good SRL and RL are than CML, by comparing the
number of elements of IPk(CML) with ThSk(CML) because ThSk(CML) is super
set or same set of Thk(Ren), and is super set of Thk(Een) and Thk(Ten).

However, it is very difficult, not impossible, to obtain all elements of Thk(CML)
and ThSk(CML) when k is a large number. In syntax approach, that is, deduc-
tion, we cannot stop the deduction process because we cannot know the number
of all elements of Thk(CML) before we obtain all elements. On the other hand,
in semantic approach, e.g. the tableau method, huge computational resource is
needed because the number of formulas which should be checked is huge.

From the relationship between the difference between the number of elements
of Fk(CML) and FSk(CML) and the degree of implication, we analogize the re-
lationship between the difference between the number of elements of Thk(CML)
and ThSk(CML) and the degree of implication. It is possible to regard that a
certain schema consists of a certain permutation of pattern variables and a certain
connection of logical connectives. On a certain connection of logical connectives,
we regard following conditions as limitations of the possible kinds of permutations
of pattern variables: (1) a schema is an element of Fk(CML), (2) a schema is an el-
ement of FSk(CML), (3) a schema is an element of Thk(CML), and (4) a schema
is an element of ThSk(CML). For example, while a certain connection of logical
connectives is γ ⇒ (γ ⇒ γ) (γ means the place to put pattern variables), on limi-
tation (1) ∼ (4), the possible kinds of permutations are respectively 5 kinds(‘aaa’,
‘aab’, ‘aba’, ‘abb’, and ‘abc’), 1 kind (‘aaa’), 3 kinds (‘aaa’, ‘aba’ and ‘abb’), and
1 kind(‘aaa’). Note that ‘a, b, c’ denote pattern variables. The difference between
the number of elements of Fk(CML) and FSk(CML) is caused by the difference
between the severeness of limitation (1) and (2), and similarly, that of Thk(CML)
and ThSk(CML) is caused by the difference between the severeness of limitation
(3) and (4). The difference between the severeness of limitations becomes clear as
the number of places to put pattern variables in a schema becomes large. Let m
be the kinds of pattern variables which occur in a schema, and n be the number
of places to put pattern variables in the schema.

• m is equal or less than n if a schema is an element of Fk(CML).

• m is equal or less than n − 1 if a schema is an element of Thk(CML).

• m is equal or less than n/2 if a schema is an element of FSk(CML) or
ThSk(CML).
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The possible kinds of permutations of pattern variables increase explosively in
proportion to the increasement of the kinds of pattern variables in a schema.
The number of places to put pattern variables in a schema becomes large as the
degree of implications becomes large. Hence, the difference between the number
of elements of Fk(CML) and FSk(CML) becomes larger and larger as the degree
of implication becomes large, and similarly, the difference between the number of
elements of Thk(CML) and ThSk(CML) becomes larger and larger, too. That
is, these differences have same tendency against the increasement of the degree of
implication.

3.5 Quantitative analysis

In this section, we calculated the number of elements of Fk(CML) and FSk(CML).
The number of elements of Fk(CML) is calculated with the number of kinds of

schemata without pattern variables and the number of elements of their equivalence
classes. A formula is a schema without pattern variables if and only if a certain
schema whose all pattern variables are removed. Let A and B denote schemata of
well-formed formulas. Let R(A, B) denote a relation that both schemata without
pattern variables of A and B are same. A set of schemata of well-formed formulas
can divide into equivalence classes because R(A,B) is an equivalence relation.

‘Label’ denotes the places of pattern variables in a schema without pattern
variables. ‘Label number’ denotes the number of labels in a schema without pattern
variables. The number of elements of an equivalence classes of a schema without
pattern variables is the possible kinds of permutations of pattern variables, while
label number is i.

A

A

A

A

A

A

B

C

B

B

B

B

B

C

C

C

D

A

B

C

A

B

A

i=1 2 3 4

D1

D3

D2

Figure 3.2: The permutations of pattern variables and the label numbers
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Figure 3.2 is the relationship between label numbers and the number of per-
mutations of pattern variables. In the figure, pattern variables are represented
by capital alphabet. Let i denotes the label number. Di in the figure defined as
follows,

Di = i + 1. (3.3)

Let p[i] denote the number of permutations of pattern variables in label number
i. p[i] is defined as follows,

p[1] = 1,

p[i] =
i−1∑

k=1

(
Sk

i−1 · Dk

)
, (i > 1). (3.4)

The coefficient Sk
n, (1 ≤ n, 1 ≤ k) in eq. (3.4) is the stirling numbers of the second

kind. The stirling numbers of second kind is defined as follows,

Sk
n = 0, (n < k),

S1
n = 1,

Sn
n = 1,

Sk
n = Sk−1

n−1 + Sk
n−1 · k, (k < n). (3.5)

Let L[k][i] denote the number of kinds of schemata without pattern variables
while the degree of implications is k and label numbers is i. L[k][i] is defined as
follows,

L[k][i] = 0, (k + 1 ≤ i ≤ 2k),

=
2(k−1)∑

j=k

(
k−1∑

e=0

L[k − 1][j] · L[e][h] · 4
)

, (e 6= k − 1, j + h = i),

=
2(k−1)∑

j=k

(
k−1∑

e=0

L[k − 1][j] · L[e][h] · 2
)

, (e = k − 1, j + h = i). (3.6)

The initial values of above equation are as follows,

L[0][1] = 2,

L[1][2] = 8. (3.7)

From eq. (3.4) and eq. (3.6), the number of elements of Fk(CML) is defined
as follows,

k∑

i=1




2i∑

j=i+1

L[i][j] · p[j]


 . (3.8)

On the other hand, we can calculate the number of elements of FSk(CML)
from following the equivalence relation. Let F ′

k(CML) denote the set of schemata
without pattern variables in Fk(CML). We can divide F ′

k(CML) into equivalence
classes by using the degree of implications k, label numbers i, the number of labels
a which are antecedent parts of the schema without pattern variables, the number
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of antecedent parts for short, and the number of labels c which are consequent
parts of the schema without pattern variables, the number of consequent parts for
short. Note that k is zero or a natural number and k + 1 ≤ i ≤ 2k, a + c = i.
The number of kinds of elements satisfying SRP on a certain schema without
pattern variables is calculated by the number of antecedent parts and the number
of consequent parts on the schema without pattern variables.

Let K = (k, i, a, c, s) denote the representative where the degree of implica-
tions k, label numbers i, the number of antecedent parts a, the number of conse-
quent parts c and the number of elements of this equivalence class s. s is a value
which totaled the product of the number of elements of all order pair (M, V ) in
F ′

k(CML). Those order pairs fill the following relations, if other representative
M = (m, n, o, p, q) and V = (v, w, x, y, z) are not same K.

k = max(m, v) + 1

i = n + w

a = p + x

c = o + y

s = s + q · z (3.9)

The initial values are (0, 0, 0, 1, 1) and (0, 1, 0, 1, 1) when the degree of impli-
cation is 0, and are (1, 2, 1, 1, 4), (1, 2, 2, 0, 2), and (1, 2, 0, 2, 2) when the degree of
implication is 1. The number of elements of the equivalence classes is calculated
from the initial values by applying the relation of eq. (3.9).

While the number of antecedent parts is a, and the number of consequent parts
is c, the number of kinds of elements satisfying SRP on a certain schema without
pattern variables is calculated as follows,

min(a,c)∑

j=1

Q (j,min(a, c)) · j! · Q (j, max(a, c)) . (3.10)

Q(p, n) is defined as follows,

Q(p, n) = 0, (n < p)

Q(p, p) = 1,

Q(p, p + 1) =
p∑

j=1

j,

Q(p, p + m) =
p∑

j=1

(j · δ[m − 1][j]), (1 < m). (3.11)

δ[i][j] is defined as follows,

δ[1][j] =
p∑

k=j

k, (1 ≤ j ≤ p)

δ[i][j] =
p∑

k=j

(k · δ[i − 1][k]), (1 < i, 1 ≤ j ≤ p). (3.12)
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Table 3.1: The number of elements of Fk(CML) and FSk(CML)
degree Fk(CML) FSk(CML)

(a) (b)

1 1.60 × 101 4.00 × 100

2 2.26 × 103 2.60 × 102

3 1.67 × 108 8.90 × 106

4 2.92 × 1019 5.15 × 1017

5 1.63 × 1045 6.31 × 1042

6 4.29 × 10103 2.13 × 10100

7 1.02 × 10235 3.09 × 10230

8 8.15 × 10527 5.61 × 10521

Table 3.2: The number of elements of Thk(CML) and ThSk(CML)
degree Thk(CML) ThSk(CML) (a − b)/b (c − d)/d

(c) (d)

1 2.00 × 100 2.00 × 100 3.00 0.00
2 3.14 × 102 9.80 × 102 7.68 2.20
3 4.19 × 107 2.44 × 106 17.78 7.13

We can calculate the number of elements of FSk(CML) from eq. (3.9) and
(3.10). Table 3.1 shows the number of elements of Fk(CML) and FSk(CML)
(1 ≤ k ≤ 8). Figure 3.3 shows the relationship between the degree of implication,
and the difference between the number of elements of Fk(CML) and FSk(CML).
The y-axis shows the value of (a − b)/b, where a and b mean the number of
elements of Fk(CML) and FSk(CML) respectively in table 3.1. The x-axis shows
the degree of implication. Fig. 3.3 shows that the difference between the elements
of Fk(CML) and FSk(CML) becomes larger as the degree of implication becomes
large.

We also get the number of elements of Thk(CML) and ThSk(CML) (k =
1, 2, 3) by scripts based on the tableau method and the definition of SRP. Table
3.2 is the number of elements of Thk(CML) and ThSk(CML) (k = 1, 2, 3). In
table 3.2, degree means the degree of implication. Thk(CML) and ThSk(CML)
mean the number of elements of them. (a−b)/b means the value of (a−b)/b where
a and b denote the number of elements of Fk(CML) and FSk(CML) respectively,
that is, the value denote β in fig. 3.1. (c − d)/d means the value of (c − d)/d
where c and d denote the number of elements of Thk(CML) and ThSk(CML)
respectively, that is, the value denote α in fig. 3.1.

The table shows that the number of elements of IP3(CML), the set of all impli-
cational paradoxes in Th3(CML), is 7.13 times as many as that of ThS3(CML). It
also shows that the difference between the number of elements of Thk(CML) and
ThSk(CML) becomes large as the degree of implication increases although that
of Thk(CML) and ThSk(CML) is less than that of Fk(CML) and FSk(CML).
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Figure 3.3: The degree and the difference between Fk(CML) and FSk(CML)

Thus we can think that the number of elements of IPk(CML) is more than 7.13
times that of ThSk(CML) when k is more than 3.

3.6 Discussion

The difference between the number of elements of Thk(Ren) and IPk(CML)
must be larger than that of ThSk(CML) and IPk(CML) because eq. 3.2 shows
Thk(Ren) is a superset of Thk(Een) and Thk(Ten), and Thk(Ren) is a same or
subset of ThSk(CML). Thus Th3(CML) has the number of implicational para-
doxes more than 7.13 times that of elements of Th3(Ren), Th3(Een), or Th3(Ten).
Moreover, we can think that the number of elements of IPk(CML) becomes larger
than that of Thk(Ren), Thk(Een), or Thk(Ten) as the k becomes large.

Implicational paradoxes spoil the validity of forward deduction, and unneces-
sarily lengthen the execution time of automated forward deduction. A conclusion
may not have the relationship between premises and the conclusion if it is deduced
from premises including implicational paradoxes or another conclusions deduced
from premises including implicational paradoxes. The process of forward deduction
which deduces such conclusion is not valid. Consequently, on automated forward
deduction, it is waste to process implicational paradoxes and conclusions deduced
from premises which include implicational paradoxes.

Thus, automated forward deduction based on SRL or RL guarantees the valid
deduction process, and its execution time is shorter than the execution time of
automated forward deduction based on CML although both deduce same conclu-
sions from same premises. Therefore, SRL or RL is quantitatively more suitable
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by far than CML, as a logic system underlying forward deduction.

3.7 Summary

We have investigated the number of implicational paradoxes in axiomatic system of
CML with only implication and negation. The investigation shows that the number
of elements of IP3(CML), the set of all implicational paradoxes in Th3(CML), is
7.13 times as many as that of ThS3(CML). The difference between the number
of elements of Thk(CML) and ThSk(CML) must become larger and larger like
that of Fk(CML) and FSk(CML), as the degree of implication becomes large.
Thus, the number of elements of IPk(CML) must be more than 7.13 times that
of ThSk(CML) when k is more than 3.

Implicational paradoxes spoil the validity of forward deduction, and unneces-
sarily lengthen the execution time of automated forward deduction. Consequently,
SRL and RL are quantitatively more suitable by far than CML, as a logic system
underlying forward deduction because the logic systems include no implicational
paradoxes. Therefore automated deduction should be based on SRL by far than
CML in order to implement a practical forward deduction engine.
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Chapter 4

Improving the performance of
automated forward deduction

4.1 Introduction

Automated forward deduction is an indispensable component of many application
systems for prediction and/or discovery. The performance of automated forward
deduction is crucial to its applicability. Since a forward deduction system working
for prediction and/or discovery has no explicitly specified proposition or theorem
given previously as goal, it often deduces many redundant intermediates, i.e. in-
stances of those that have previously deduced. Thus a large amount of execution
time and a large amount of main memory are needed to perform automated for-
ward deduction.

In order to solve the performance problem of forward deduction engines, we
investigate the relationship between the execution time of a forward deduction
engine and the amount of given premises and deduced conclusions. Based on the
investigation, we propose a parallelization model which is a kind of master-slave
model for automated forward deduction, and show the effectiveness of that model
by implementing EnCal based on the model.

The rest of this chapter is organized as follows: section 4.2 gives an analysis for
execution time of automated forward deduction. Section 4.3 presents a paralleliza-
tion model of automated forward deduction, and section 4.4 presents the model
of parallelization version of EnCal in order to show a case study of improving the
performance of automated forward deduction by parallel processing. Section 4.5
shows our implementation of the parallelization version of EnCal and our exper-
iments on a shared-memory parallel computer and clusters of PCs. Section 4.6
discusses our experimental results. Summary is given in Section 4.7.

4.2 Computational complexity of automated for-

ward deduction

Automated forward deduction is a process of deducing new and unknown conclu-
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sions automatically by applying inference rules to premises and previously deduced
conclusions repeatedly until some previously specified condition is satisfied. An
automated forward deduction consists of 3 parts as follows:

1. Initialization part: it takes in premises, some termination conditions, and
inference rules.

2. Forward deduction part: about each inference rule, it repeats following pro-
cesses until it deduces no new conclusion.

(a) Matching process: it seeks and picks up some premises, which are to be
applied to an inference rule, from a set of premises. Then it matches
the premises to an inference rule.

(b) Deduction process: it applies an inference rule to the premises which
were matched at the matching process.

(c) Duplication checking process: it compares a conclusion which was de-
duced at the deduction process with all previously deduced conclusions
and premises in order to check whether it is a duplicate or not.

(d) Adding process: it adds the conclusion which was judged to be new at
the duplication checking process to the set of premises.

3. Outputting part: it outputs all new conclusions into files.

In general, in order to get new conclusions, forward deduction engines perform the
above four processes in forward deduction part repeatedly for each inference rule,
until some termination conditions are satisfied. The each process in the forward
deduction part depends on the result of previous process prior to it.

We present some equations about the execution time and the amount of data
of forward deduction engines if all inference rules apply to all given premises. Let
n be the number of previously given premises, i be the number of inference rules,
r be the number of premises required by an inference rule, in this assumption all
inference rules require r premises, and τm be the execution time of judging whether
an inference rule can apply to some premises or not and matching the inference
rule to the premises at the matching process. The execution time at the matching
process is

nr · i · τm. (4.1)

Let τd be the execution time of deducing a conclusion. The execution time at the
deduction process is at most

nr · i · τd. (4.2)

Let τc be the execution time of comparing a deduced conclusion at the deduction
process with a previously deduced conclusion or a given premise at the duplication
checking process. The execution time at the duplication checking process is at most

nr · n · i · τc + (1 · τc + 2 · τc + . . . + (i · nr − 1) · τc)

= (nr+1 · i +
i·nr−1∑

k=1

k) · τc

=
1

2

{
i2 · n2r + 2 · i · nr+1 − i · nr

}
· τc. (4.3)
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Let τa be the execution time of adding a conclusion into a set of premises. The
execution time at the adding process is at most

nr · i · τa. (4.4)

In this assumption, the total execution time of above four processes is

nr · i · (τm + τd + τa) +
1

2

{
i2 · n2r + 2 · i · nr+1 − i · nr

}
· τc

≈ O(i2 · n2r). (4.5)

On the other hand, the number of deduced conclusions in forward deduction is
huge. Let n be the number of premises, i be the number of inference rules, and r
be the number of premises required by an inference rule. The number of deduced
conclusions at deduction process is at most

nr · i. (4.6)

Let R1 denote the set of the conclusions which are deduced from given premises.
The number of conclusions which are deduced from R1 as premises at deduction
process is at most

n2·r · ir+1. (4.7)

Rj denotes the set of conclusions which are deduced from Rj−1 at deduction process
(2 ≤ j). The number of conclusions which are deduced from Rj−1 is at most

nj·r · i
∑j−1

k
k. (4.8)

In the adding process, deduced new conclusions are added into the set of premises.
Then processing of forward deduction is again repeated using the conclusions as
premises. Thus, even the number of premises is few, the number of deduced
conclusions becomes large easily.

We therefore can regard the execution time of a forward deduction engine as
O(N2r), where N denotes the number of data which includes both finally deduced
conclusions and given premises, because the number of data N is rather large than
the number of given inference rules i. A useful forward deduction engine must
get enough effective conclusions in an acceptable time. Thus we must improve the
performance of a forward deduction engine.

The performance of a forward deduction engine can be improved by aspects.
One is shortening the execution time of each process in a forward deduction engine.
Another is reducing the processing load. The first aspect focuses on the execution
time of each process, i.e. shortening τm, τd, τc and τa. It is expected that it can
shorten the execution time of a forward deduction engine at a constant rate without
the increasement in the number of deduced conclusions and given premises. The
second aspect focuses on the processing load: the order of the execution time
become less than O(N2r) where N is the number of deduced conclusions and given
premises and r is the number of premises required by an inference rule. This aspect
can be classified into two approaches. One is to narrow down the range of data
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Deduced 
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Figure 4.1: Data arrangement of parallelization model of automated forward de-
duction

being processed. As at a certain time, it is not necessarily to process all data at a
certain process of a forward deduction engine. It is better that only certain data
which must be processed is done. It is also expected that this approach can shorten
the execution time at a constant rate without the increasement in the number of
deduced conclusions and given premises. Other is reducing the processing load on
one processor by parallel processing. It is expected that this approach can shorten
the execution time in proportion to the number of using processors.

We focus on reducing the processing load on one processor by parallel pro-
cessing. This approach is flexible to the increasement in the number of deduced
conclusions and given premises since it can increase the number of processors.

4.3 A parallelization model of automated for-

ward deduction

We summarize the processing features of automated forward deduction.

1. The each process in the forward deduction part depends on the results of
previous process prior to it.

2. Previously deduced conclusions and given premises are accessed frequently
at the matching process and the duplication checking process.

3. Independently of other sets, matching process, deduction process, and adding
process can process the set which consists of a certain inference rule and a
certain set of premises.

4. The certainty to detect the duplication in duplication checking process de-
creases, if it cannot compare a deduced conclusion with all previously de-
duced conclusions and given premises.
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Figure 4.2: A parallelization model of automated forward deduction

We design a parallelization model of automated forward deduction based on
master-slave model. Master-slave model based on agenda parallelism paradigm
[3] is a suitable model for parallel automated forward deduction because of above
features 1, 3 and 4.

Figure 4.1 shows the data arrangement of parallelization model of automated
forward deduction. In fig. 4.1, ‘slave 1 private data’ means data which other slaves
cannot access. ‘slave 2 private data’ is so. The inference rules, previously deduced
conclusions, and given premise are shared by slaves because of the above feature 2.
The deduced conclusions in a slave are put on the slave’s address space, because
the writing to a memory occurs.

Figure 4.2 shows the model of parallelization version of automated forward
deduction. The model consists of 4 parts: initialization part, master part, slave
part, and outputting part, where matching process, deduction process, duplication
checking process, and adding process are as same as the processes of sequential
automated forward deduction.

1. Initialization part: it takes in premises, some termination conditions, and
inference rules.

2. Master part: it evenly divides all sets of given premises and previously de-
duced conclusions to all slaves. Note that the sets are requires inference rules
as premises. It changes a slave part after dividing premises and conclusions
to slaves.
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3. Slave part: the following processes are repeated independently of other slaves.

(a) Matching process.

(b) Deduction process.

(c) Duplication checking process.

4. Duplication checking among slaves process: it detects and reduces the du-
plicate which is not detected at the duplication checking process in slave
part.

5. Adding process.

6. Outputting part.

It is necessary for efficient duplication check to be able to access all previously
deduced conclusions. However, the set of deduced conclusions at a slave is not
referred by other slaves. Hence, this model needs the duplication checking among
slaves process.

We present some equations about the execution time of duplication checking
among slaves process if all slaves deduces same number of conclusions. Let m be
the number of deduced conclusions in a slave, and p be the number of slaves. Let τc

be the execution time of comparing a deduced conclusion at the deduction process
with a previously deduced conclusion at duplication checking among slaves process
or duplication checking process. The execution time of duplication checking among
slaves process is at most

p−1∑

k=1

m2 · τc = (p − 1) · m2 · τc. (4.9)

Let n be the number of previously given premises, i be the number of inference
rules, r be the number of premises required by an inference rule, in this assumption
all inference rules require r premises, and p be the number of slaves. In this model,
the number of deduced conclusions in a slave is at most n/p. Thus the execution
time at a slave part is as follows from eq. (4.5) and eq. (4.9),

nr

p
· i (τm + τd + τa) +

1

2p

{
i2 · n2r

p
+ 2 · i · nr+1 − i · nr

}
· τc

+(p − 1)
n2·r · i2

p2
· τc. (4.10)

From eq. (4.5) and eq. (4.10), the speed-up ratio against the increasement of
the number of slaves is presented as follows,

nr · i · (τm + τd + τa) + 1
2
{i2 · n2r + 2 · i · nr+1 − i · nr} · τc

nr

p
· i (τm + τd + τa) + 1

2p

{
i2 · n2r

p
+ 2 · i · nr+1 − i · nr

}
· τc + (p − 1)n2·r·i2

p2 · τc

≈
1
2
{i2 · n2r + 2 · i · nr+1 − i · nr} · τc

1
2p

{
i2 · n2r

p
+ 2 · i · nr+1 − i · nr

}
· τc + (p − 1)n2·r·i2

p2 · τc
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≈
1
2
{i2 · n2r} · τc

1
p
{i2 · n2r} · τc

=
p

2
. (4.11)

When n2r is large, we can expect that this model is effective for improving
performance of automated forward deduction.

4.4 Parallelization version of EnCal

In following sections, we present a case study of improving the performance of
EnCal with parallel processing. In this case study, we focus on EnCal-P that
reasons out all logical theorem schemata , LTSs for short, of the kth degree fragment
of a propositional logic since it is most basic function of EnCal.

An automated forward deduction by EnCal consists of 3 parts as follows.

1. Initialization part: it takes in premises, limits of degree k and j and inference
rules.

2. Forward deduction part: about each inference rule, it repeats following pro-
cesses until it deduces no new LTSs.

(a) Matching process: it seeks and picks up some LTSs from a set of pre-
viously deduced LTSs or premises to apply an inference rule. Then it
matches the LTS to the inference rule.

(b) Deduction process: it applies the inference rule to the LTSs which were
matched at the matching process.

(c) Duplication checking process: it compares a conclusion which was de-
duced at the deduction process with all previously deduced LTSs in
order to check whether it is duplicate or not.

(d) Adding process: it adds the conclusion which was judged to be new at
the duplication checking process as new LTS to the set of premises if
the its degree of nest of entailment is ith degree (1 ≤ i ≤ k).

3. Outputting part: it outputs all new LTSs to a file.

At present, the inference rule of EnCal is modus ponens only. Modus ponens is
that B is deduced from A ⇒ B and A. The termination condition of EnCal-P is
to deduce all logical theorem schema in the kth degree fragment of a logic system
L, denoted by Thk(L), from given axioms, where k is a natural number.

The forward deduction algorithm in EnCal is as follows. Let n be the number
of previously deduced LTSs and given premises, and {P} = {P0, P1, . . . , Pn−1} be
the set of premises and previously deduced LTSs.

Algorithm 1 Forward deduction

1. n ← the number of premises.
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2. p ← 0

3. k ← the limit of degree.

4. do

5. n
′ ← n

6. for (i ← 0, i < n, i ← i + 1 )

7. for (j ← p, j < n, j ← j + 1 )

8. Matching(Pi,Pj):
If it can apply Modus Ponens to between Pi and Pj,
return SUCCESS. If no, return FAILURE.

9. if Matching(Pi,Pj) returns SUCCESS

10. then Deduction(Pi,Pj):
it applies Modus Ponens to Pi and Pj.

11. Duplication check(C):
If a conclusion C which was deduced at Deduction(Pi,Pj) is
duplicate, return DUPLICATE. If no, return NEW.

12. if Duplication check(C) returns NEW

13. then Adding(C):
it adds an a conclusion C into {P} if the degree of C is smaller
than k. After that n′ ← n

′
+ 1.

14. for (i ← p, i < n, i ← i + 1 )

15. for (j ← 0, j < p, j ← j + 1 )

16. Matching(Pi,Pj)

17. if Matching(Pi,Pj) returns SUCCESS

18. then Deduction(Pi,Pj)

19. Duplication check(C)

20. if Duplication check(C) returns NEW

21. then Adding(C)

22. p ← n

23. n ← n
′

24. while (new LTSs are deduced).

The algorithm of Duplication check(C) is as follows. Let Comp(A, B) be a
function which compares A with B to judge whether B is duplicate of A. If B is
duplicate, then Comp(A, B) returns DUPLICATE.

Algorithm 2 Duplication check(C)

1. for (i ← 0, i < n, i ← i + 1)

2. Comp(Pi, C):
C is a conclusion which was deduced at Deduction process.

3. if Comp(Pi, C) returns DUPLICATE

4. then return DUPLICATE

5. return NEW.
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Figure 4.3: The model of parallelization version of EnCal

The major portion of the execution time of EnCal as same as automated for-
ward deduction is spent at the duplication checking process. Let N be the number
of given premises and new LTSs which are deduced finally. The number of premises
required by modus ponens is two. The number of times of processing Matching(A,
B) is N2. The number of times of processing Duplication check(A) is at most N2

and at least N , since the number of deduced conclusions and intermediates is at
most N2 and at least N . The number of times of processing Comp(A, B) is at
most

N2−1∑

k=1

k =
{N2(N2 − 1)}

2
, (4.12)

and at least
N−1∑

k=1

k =
{N(N − 1)}

2
. (4.13)

Thus the calculated amount of EnCal approaches at most O(N4) and at least
O(N2).

We design the parallelization version of EnCal based on the parallelization
model in section 4.3. Figure 4.3 shows the model of parallelization version of
EnCal. On this parallelization of EnCal, let p be the number of processors, and
N be the number of given premises and new LTSs which are deduced finally. If
deduced conclusions or intermediates are evenly deduced on each slave, the number
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of times of processing Comp(A,B) at the duplication check process on one slave is
at most ∑N2−1

k=1 k

p
=

{N2(N2 − 1)}
2p

, (4.14)

and at least ∑N−1
k=1 k

p
=

{N(N − 1)}
2p

. (4.15)

The number of times of processing Comp(A,B) at the duplication checking among
slaves process is at most

p ·
N2/p−1∑

k=1

k =
{N2(N2 − p)}

2p
, (4.16)

and at least

p ·
N/p−1∑

k=1

k =
{N(N − p)}

2p
. (4.17)

Thus the theoretical speed up ratio is approximated as follows,

Speed up ratio ≈
{N2(N2−1)}

2
{N2(N2−1)}

2p
+ {N2(N2−p)}

2p (at most)

(4.18)

≈
{N(N−1)}

2
{N(N−1)}

2p
+ {N(N−p)}

2p (at least)

≈ p

2

In the parallelization version of EnCal based on master-slave model, its theoret-
ical value shows that the processing load on one processor decreases in proportion
to the increasement in used processors.

4.5 Implementation and results

Table 4.1: The execution time on Sun Enterprise 6000 (sec.)

Logic systems 1 processor 2 processors 4 processors 8 processors 16 processors

Te(4) 3499 1641 922 562 381
Ee(4) 12347 6100 3370 2021 1290
Re(4) 85962 41146 21825 12668 8236

We implemented the parallelization version of EnCal based on master-slave
model on a shared-memory parallel computer and a cluster of PCs, and got the
execution time of deducing 4th degree fragment from axioms of some logic systems,
in order to investigate the effectiveness of its model.
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Figure 4.4: Speed-up ratio on Sun Enterprise 6000

We implemented the parallelization version of EnCal with C and OpenMP
[36, 38] on the Sun Enterprise 6000 (Ultra SPARC 168MHz x 16, 4Gbyte main
memory). Table 4.1 shows the execution time on Sun Enterprise 6000. Te(4)
denotes the 4th degree fragment of relevant logic system T with entailment. The
number of conclusions in Te(4) is 10,649. Ee(4) denotes the 4th degree fragment
of relevant logic system E with entailment. The number of conclusions in Ee(4)
is 15,519. Re(4) denotes the 4th degree fragment of relevant logic system R with
entailment. The number of conclusions in Re(4) is 35,027. Table 4.1 shows that
the execution time gets shorter in proportion to the increasement in the number
of processors without depending on the number of deduced conclusions. Figure
4.4 shows the relation between the number of processors and the speed-up ratio
against the execution time on 1 processor. Figure 4.4 shows the same tendency as
the theoretical value p/2, p is the number of processors, acquired in sec. 4.4 was
shown.

We also implemented the parallelization version of EnCal on an 8-node dual
Pentium III 1GHz PC SMP cluster (i840 chipset, 1GB RDRAM main memory per
node, Linux 2.2.16). The nodes on the PC SMP cluster are interconnected through
a 100Base-TX Ethernet switch. MPICH-SCore [31] was used as a communication
library. We used an intranode MPI library for the PC SMP cluster. All routines
were written in C. Table 4.2 shows the execution time on the cluster of PCs. The
column of “1 processor / 1 node” is a case of deducing by 1 processor per 1 node.
The column of “2 processors / 1 node” is a case of deducing by 2 processor per 1
node. In Table 4.2, the execution time gets shorter in proportion to the increase-
ment in the number of processors without depending on the number of deduced
conclusions. Figure 4.5 shows the relation between the number of processors and
the speed-up ratio against the execution time on 1 processor, using 2 processors
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Table 4.2: The execution time on a clusters of PCs (sec.)

Logic systems 1 processor 2 processors 4 processors 8 processors 16 processors

Te(4) 1 processor / 1 node 905 497 272 157 ———–
2 processors / 1 node ———– 497 273 157 107

Ee(4) 1 processor / 1 node 4706 2413 1285 666 ———–
2 processors / 1 node ———– 2418 1287 666 406

Re(4) 1 processor / 1 node 31317 15840 8530 4620 ———–
2 processors / 1 node ———– 15860 8570 4642 2709
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Figure 4.5: Speed-up ratio on a clusters of PCs (2 CPU / 1 node)

per node. Figure 4.5 shows the same tendency as the theoretical value p/2, p is
the number of processors, acquired in sec. 4.4 was shown.

Thus our experiments shows the model of the parallelization version of EnCal
is effective for improving the performance of EnCal, independent of the difference
in the hardware and the number of deduced conclusions.

4.6 Discussion

The reason why the speed-up ratio of the implementation on the Sun Enterprise
6000 and that of the PC SMP cluster are not same is that these implementations
are based on same the parallelization model in sec. 4.3, but not consists of same
functions, same library, same programing codes.

Improving the performance by parallel processing is effective for not only En-
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Cal but also other forward deduction engines. Our experiments showed that the
speed-up ratio increases in proportion to the increasement of the number of pro-
cessors, independent of the difference in the cases and the number of deduced
conclusions. Although the inference rule of EnCal changes from modus ponens
into other inference rules, or the premises change from Ren, Een, and Ten into
other axioms of a certain logic system, the speed-up ratio must increase in pro-
portion to the increasement of the number of processors. Only the number of
deduced conclusions in a slave and the execution time of processes in automated
forward deduction change when inference rules and premises are changed. The
speed-up ratio does not change if the execution time of processes changes. In our
parallelization model, the execution time of the parallelization one is longer than
that of sequential one, if the number of deduced conclusions in a slave changes.
Let n be the number of previously deduced conclusions and given premises, and p
be the number of processors (slaves), and r be the number of premises required an
inference rule. If the number of deduced conclusions on a certain slave is mi, and
the number of that on other slaves is mj (mj < mi, i 6= j), then the speed-up ratio
against the increasement of the number of slaves is presented as follows, from eq.
(4.5) and eq. (4.10),

≈
1
2
{i2 · n2r + 2 · i · nr+1 − i · nr} · τc

1
2
{i2 · m2

i + 2 · i · mi − i · 1} · τc + (p − 1)(mi · mj) · τc

=
1
2
{i2 · n2r + 2 · i · nr+1 − i · nr} · τc

1
2
{i2 · m2

i + (2 · i · (p − 1) · mj)mi − i · 1} · τc

. (4.19)

When n is enough large, the execution time of the parallelization one is longer
than that of the sequential one if mi is nr. However, in our parallelization model,
the number of deduced conclusions in a slave part is at most n/p, that is, mi never
becomes nr. Thus, our parallelization model of automated forward deduction is
effective for improving the performance of automated forward deduction.

4.7 Summary

We presented a model of a parallelization version of automated forward deduction
based on master-slave model and implemented EnCal based on the model on a
shared-memory parallel computer and a clusters of PCs, as a case study to in-
vestigate the effectiveness of parallel processing for improving the performance of
automated forward deduction. Our experiments showed that the execution time
on both cases gets shorter in proportion to the increasement in the number of
processors without depending on the number of deduced conclusions and given
premises. Hence, improving the performance by parallel processing is effective for
forward deduction engines.

We therefore showed that it is possible to implement a practical forward de-
duction engine by using our parallelization model.
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Chapter 5

Applications of automated
forward deduction based on
strong relevant logics

5.1 Introduction

We have investigated the issue of the logic systems underlying forward deduction
and the issue of the performance of automated forward deduction in chapter 3
and chapter 4, in order to implement a practical forward deduction engine. For
these investigation, we showed that a practical forward deduction engine can be
implemented by automated forward deduction based on SRL and based on the
parallelization model proposed by us.

In this chapter, in order to show usefulness of automated forward deduction
based on SRL, we investigate some applications of it.

5.2 Answering logic puzzles by reasoning

5.2.1 Logic puzzle and scientific discovery

Scientific discovery is indispensable to developing science. In generally, huge cost
and/or long time are necessary to find a new knowledge or fact on scientific dis-
covery. However, it is not always succeed although huge cost and/or long time are
spent to find new knowledge or facts. It is possible to reduce cost and/or time to
find a new one if all processes or one of the processes of scientific discovery can be
automated. Since there is no discovery process that does not invoke reasoning, to
automate the reasoning process is a first step of automating scientific discovery.

Automated reasoning in scientific discovery is forward rather than backward,
because there is no given target as goal in scientific discovery, and is need high
performance because it deal with huge amount of premises to draw a new con-
clusion as new knowledge. Moreover, the automated reasoning should guarantee
the valid reasoning process from the viewpoint of scientific reasoning as well as
our everyday reasoning because the advantage of automated scientific discovery
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is ‘automation’. If we must check whether a drawn conclusion is correct or not,
then there is no point in automating the reasoning process. These requirements
can be satisfied by automated forward deduction based on SRL and based on the
parallelization model proposed by us.

In this section, we show a case study to use automated forward deduction based
on SRL as a forward deduction engine for scientific discovery. In this case study,
we get answers to two logic puzzles by automated forward deduction based on
SRL.

Logic puzzle is a puzzle which has following feature:

1. it consists of premises, a question, and an answer,

2. both its premises and answer are true and have the relationship among them,

3. the answer can be proven from premises logically in finite steps.

In almost logic puzzles, its question is key information to gets its answer. If an
answer of a certain question is ‘Yes’ or ‘No’, then to solve the puzzle is to find the
path to the question or the one’s negation from premises. On the other hand, if
an answer of a certain question is the consequent of question, to solve the puzzle
is to deduce a conditional and the antecedent of the conditional, e.g. ‘if A then B’
and ‘A’ where A is the question and B is the answer, from premises. That is, the
question of a logic puzzle is the answer of the logic puzzle itself.

The approach to get an answer of a logic puzzle is classified into the proving
approach and the reasoning approach. The farther is an approach to gets an answer
of a logic puzzle with premises and a question by proving, e.g. backward reasoning
or reductio ad absurdum. The later is an approach to deduce an answer from
premises by forward reasoning. To solve a logic puzzle on the reasoning approach
is to gets a set of conclusions which includes an answer of the logic puzzle, but
does not include the negation of answer and contradictions.

The process to solve a logic puzzle on reasoning approach is a particular case
of scientific discovery which is satisfied following conditions:

1. there are already enough premises to deduce new knowledge or facts,

2. it guarantees to be able to get new knowledge or facts,

3. the new knowledge or fact is previously given as a question and/or an answer,

4. the amount of premises is small.

The essential difference between the process to solve a logic puzzle on the reasoning
approach and scientific discovery is whether a new knowledge or fact is previously
given or not. Other differences are also important, but not essential.

Thus we conclude that automated forward deduction based on SRL is an useful
tool to automate the reasoning process in scientific discovery if it can solve a logic
puzzle on the reasoning approach with automated forward deduction based on
SRL.
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5.2.2 Experiments and Results

We got answers to two logic puzzles on the reasoning approach [24]. The logic
puzzles are ‘Three goddesses’ and ‘Angel and devil’ [37]. In this case study, we
used EnCal-E and 3rd degree fragment of a predicate strong relevant logic EcQ
as a forward deduction engine. EnCal-E is a tool for reasoning out all empirical
theorems of the jth degree fragment of L-theory with premises P based on kth

degree fragment of a formal logic system L.
This case study is consists of following procedure:

1. to transform the premises and an answer of a logic puzzle into first order
theory,

2. to deduce empirical theorems from the transformed premises by EnCal-E,

3. to find out the transformed answer or the negation of the answer, and con-
tradictions from deduced empirical theorems.

In this case study, it can find out the answer or negation of answer, and contradic-
tions automatically, because we chose logic puzzles whose the transformed answer
does not include two-place logical connectives.

We show the results of this case study below.

Logic puzzle: Three goddesses

Three goddesses say as follows:

Athena: The most beautiful goddess is not Aphrodite.
Aphrodite: The most beautiful goddess is not Hera.
Hera: I am the most beautiful goddess.

Only the most beautiful goddess says truth. Who is the most
beautiful goddess?
Answer: Aphrodite.

The premises of this logic puzzle are transformed as follows:

• a, b, and c denote Athena, Aphrodite, and Hera respectively.

• a 6= b, b 6= c, and c 6= a

• Most(x) denotes that x is the most beautiful goddess.

• ∀x∀y((x 6= y) ⇒ (Most(x) ⇒ ¬Most(y))) denotes that if x is the most
beautiful goddess then y is not.

• Most(a) ⇒ ¬Most(b) and ¬Most(a) ⇒ Most(b) denote that the most beau-
tiful goddess is not Aphrodite.
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• Most(b) ⇒ ¬Most(c) and ¬Most(b) ⇒ Most(c) denotes that the most
beautiful goddess is not Hera.

• Most(c) ⇒ Most(c) and ¬Most(c) ⇒ ¬Most(c) denote that the most beau-
tiful goddess is Hera.

The number of deduced empirical theorems from above premises by EnCal-E
was 146. The theorems which do not include two-place logical connectives were
¬Most(a), Most(b), and ¬Most(c). These results are not contradictory to the
answer of above logic puzzle.

Logic puzzle: Angel and devil

Only angels and devils occur in Erika’s dream. Angels always
say truth. Devils always say falsehood. Yesterday, two women
occurred in Erika’s dream. The one said ‘If I am an angel, then
she is an angel, too.’ Can we know whether they are angels or
devils?
Answer: Yes, we can. They are angels.

The premises of this logic puzzle are transformed as follows:

• Devil(x) denotes x is a devil.

• Angel(x) denotes x is an angel.

• a and b means two women.

• ∀x(Angel(x) ⇒ ¬Devil(x)) denote that if x is an angel then x is not a devil.

• ∀x(Devil(x) ⇒ ¬Angel(x)) denote that if x is a devil then x is not an angel.

• Angel(a) ⇒ (Angel(a) ⇒ Angel(b)) and Devil(a) ⇒ ¬(Angel(a) ⇒ Angel(b))
denote that ‘If I am an angel then, she is an angel, too’

The number of deduced empirical theorems from above premises by EnCal-E
was 168. The theorems which do not include two-place logical connectives were
¬Devil(a), Angel(a), ¬Devil(b), and ¬Devil(b). These results are not contradic-
tory to the answer of above logic puzzle.

5.2.3 Discussion

In this case study, we tried to solve two logic puzzles by automated forward deduc-
tion based on SRL on the reasoning approach. We could solve both of them. This
case study showed that automated forward deduction based on SRL is essentially
possible to automate the reasoning process in scientific discovery.
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By the way, we can narrow down the required premises enough to deduce
a new knowledge or fact with automated forward deduction, semi-automatically.
The process to solve a logic puzzle on the reasoning approach is a particular case of
scientific discovery. One of the important differences between the process to solve
a logic puzzle and scientific discovery is that there are already enough premises
to deduce new knowledge or facts as an answer and/or a question. In scientific
discovery, it is difficult to provide all premises enough to deduce new knowledge
or facts, because we cannot know which premises are necessary to deduce new
one before we get the new one. Thus we should provide all premises enough
to deduce new knowledge or facts by trial and error. However, the cost and/or
time to spent the process of trial and error are reduced by automated forward
deduction base on SRL. Since forward deduction based on SRL guarantees that
the conclusions are true if all premises are true, we know that there are incorrect
premises if a conclusion is false, in the framework of the strong relevance. By using
above behavior, we can narrow down the required premises by using reductio ad
absurdum with automated forward deduction base on SRL, semi-automatically.

5.2.4 Summary

We investigated the usefulness of automated forward deduction based on SRL in
order to automate the reasoning process in scientific discovery. We tried to solve
two logic puzzles on the reasoning approach by automated forward deduction based
on SRL, as a particular case of scientific discovery. This case study showed that
automated forward deduction based on SRL is essentially possible to automate the
reasoning process in scientific discovery.

5.3 Automated theorem finding in NBG set the-

ory

5.3.1 Automated theorem finding by forward deduction

Wos in 1988 proposed 33 basic research problems in automated reasoning [47].
The thirty-first one is the problem of automated theorem finding, ATF for short,
which is: “what properties can be identified to permit an automated reasoning
program to find new and interesting theorems, as opposed to proving conjectured
theorems?” [47, 48] The field of automated reasoning is an outgrowth of the
field of automated theorem proving. In fact, the dominant activity in automated
reasoning is still that of proving some conjectured theorems. Nevertheless, the
problem of ATF asks for criteria that an automated reasoning program can use to
find interesting theorems, in contrast to proving conjectured theorems supplied by
the users [48].

ATF is still a completely open problem up to now. The most important and
difficult requirement of the problem is that, in contrast to proving conjectured
theorems supplied by the users, it asks for criteria that an automated reasoning
program can use to find some theorems in a field that must be evaluated by
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theorists of that field as new and interesting theorems. The significance of solving
the problem is obvious because an automated reasoning program satisfying the
requirement can provide great assistance for scientists in various fields.

Cheng argued that ATF can be regarded as the automation of deduction op-
erations of an agent [5]. From the viewpoint of logic, Cheng also pointed out that
CML and/or its various conservative extensions, and traditional relevant logics,
RL for short, are not suitable logic systems to underlie ATF, and proposed ap-
proach to the ATF problem that one should use SRL for mathematical knowledge
representation and reasoning [5]. Since SRL are free of not only implicational para-
doxes in CML and/or its various extensions, but also conjunction-implicational and
disjunction-implicational paradoxes in RL, the valid reasoning process is guaran-
teed. Thus, SRL can satisfy the essential requirements for the logic system to
be used as the fundamental logics to underlie ATF [5]. We agree with Cheng’s
argument from the viewpoint of a quantitative suitable logic system to underlie
automated forward deduction.

On the other hand, in generally, an interesting theorem is complete and difficult
by contrast axioms or definitions in a certain field. If completeness and difficulty of
the theorem come from the length of the path which is from axioms and definitions
as premises to the theorem as conclusion, then automated forward deduction in
ATF is need high performance because of large amount of data. The amount of
data processed in ATF becomes larger as the length of the path becomes longer.

We conclude that a forward deduction engine which is automated forward de-
duction based on SRL, and is implemented based on the parallelization model
proposed by us is necessary to perform ATF by forward deduction.

5.3.2 Case study of automated theorem finding in NBG
set theory

We tried to perform ATF in von Neumann-Bernays-Godel set theory , NBG set
theory for short, by automated forward deduction based on SRL, as a case study.

NBG set theory is one axiom system for set theory that can in turn be ex-
pressed within the language of the first-order predicate calculus, which can be
programmed on a digital computer. On the other hand, all extant mathematics
can be formulated within the language of set theory.

In this case study, axioms and definitions of NBG set theory that we took are
listed in a book entitled “Automated Development of Fundamental Mathematical
Theories” [39]. We transformed them to the formulas with only entailment and
negation connectives of SRL by adopting equivalent formulas that include defined
intensional connectives. They are shown as follows, where every axiom and defini-
tion are represented with intensional connectives of SRL, and existential quantifier
in the formula is represented universal quantifier by quantifier equivalence formula
∃xM(x) ≡ ¬∀x¬M(x).

Axiom A-1: Sets are classes

∀x(M(x) ⇒ CLS(x)). (5.1)
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Here, CLS(x) means x is a class, M(x) means x is a set.

Axiom A-2: Elements of classes are sets

∀x∀y(x ∈ y ⇒ M(x)). (5.2)

Here, (x ∈ y) means x belongs to y.

Axiom A-3: Extensionality

∀x∀y(∀u(M(u) ⇒ (u ∈ x ⇔ u ∈ y)) ⇒ (x = y)). (5.3)

Axiom A-4: Existence of unordered pair

∀x∀y(M(x) ⊗ M(y) ⇒ ∃z(M(z) ⊗ ∀u(M(u) ⇒ (u ∈ z ⇔ (u = x ⊕ u = y))))).
(5.4)

Definition of unordered pair

∀x∀y∀u(M(x) ⊗ M(y) ⊗ M(u) ⇒ (u ∈ {x, y} ⇔ (u = x ⊕ u = y))). (5.5)

Here, {x, y} means x and y is an unordered pair.

Definition of singleton set

∀x(M(x) ⇒ ({x} = {x, x})). (5.6)

Here, {x} means singleton set.

Definition of ordered pair

∀x∀y(M(x) ⊗ M(y) ⇒ (< x, y >= {{x}, {x, y}})). (5.7)

Here, < x, y > means x and y is an ordered pair.

Axiom B-1: Elementhood relation

∃z∀x∀y(M(x) ⊗ M(y) ⇒ (< x, y >∈ z ⇔ x ∈ y)) (5.8)

Axiom B-2: Binary intersection

∀x∀y∃z∀u(M(u) ⇒ (u ∈ z ⇔ (u ∈ x ⊗ u ∈ y))). (5.9)

Axiom B-3: Complement

∀x∃y∀u(M(u) ⇒ (u ∈ y ⇔ ¬(u ∈ x))). (5.10)

Axiom B-4: Domain

∀x∃y∀z(M(z) ⇒ (z ∈ y ⇔ ∃u(< u, z >∈ x))). (5.11)

Axiom B-5: Cartesian product
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∀x∃y∀z∀u(M(z) ⊗ M(u) ⇒ (< z, u >∈ y ⇔ u ∈ x)) (5.12)

Axiom B-6: Inverse

∀x∃y∀z∀u(M(z) ⊗ M(u) ⇒ (< z, u >∈ y ⇔< u, z >∈ x)). (5.13)

Axiom B-7: Rotate

∀x∃y∀z∀u∀v(M(z)⊗M(u)⊗M(v) ⇒ (< z, < u, v >>∈ y ⇔< u, < v, z >>∈ x)).
(5.14)

Axiom B-8: Flip

∀x∃y∀z∀u∀v(M(z)⊗M(u)⊗M(v) ⇒ (< z, < u, v >>∈ y ⇔< z, < v, u >>∈ x)).
(5.15)

Definition of ⊆ (subclass)

∀x∀y((x ⊆ y) ⇔ ∀u((u ∈ x) ⇒ (u ∈ y))). (5.16)

Definition of ⊂ (proper subclass)

∀x∀y(x ⊂ y ⇔ (x ⊆ y ⊗ ¬(x = y))). (5.17)

Definition of EMPTY

∀x(EMPTY (x) ⇔ ∀u(M(u) ⇒ ¬(u ∈ x)). (5.18)

Definition of DISJOINT

∀x∀y(DISJOINT (x, y) ⇔ ∀u(M(u) ⇒ ¬(u ∈ x ⊗ u ∈ y))). (5.19)

Definition of SINGVAL

∀x(SINGV AL(x) ⇔
∀u∀v∀w(M(u) ⊗ M(v) ⊗ M(w)⊗ < v, u >∈ x⊗ < w, u >∈ x ⇒ (v = w))).

(5.20)

Axiom C-1: Infinity

∃x(¬EMPTY (x) ⊗ ∀z(z ∈ x ⇒ ∃u(u ∈ x ⊗ z ⊂ u))). (5.21)

Axiom C-2: Sum class

∀x(M(x) ⇒ ∃y(M(y) ⊗ ∀u∀v(M(u) ⊗ M(v) ⊗ u ∈ v ⊗ v ∈ x ⇒ u ∈ y))). (5.22)

Axiom C-3: Power class

∀x(M(x) ⇒ ∃y(M(y) ⊗ ∀u(M(u) ⊗ u ⊆ x ⇒ u ∈ y))). (5.23)
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Axiom C-4: Replacement

∀z∀x(SINGV AL(z) ⊗ M(x) ⇒
∃y(M(y) ⊗ ∀u(M(u) ⊗ u ∈ y ⇒ ∃v(M(v) ⊗ v ∈ x⊗ < u, v >∈ z)))).

(5.24)

Axiom D: Regularity

∀x(¬EMPTY (x) ⇒ ∃u(M(u) ⊗ u ∈ x ⊗ DISJOINT (u, x))). (5.25)

Axiom E: Universal choice

∃z(SINGV AL(z)⊗∀x(M(x)⊗EMPTY (x) ⇒ ∃y(M(y)⊗y ∈ x⊗ < y, x >∈ z))).
(5.26)

We used EnCal in the experiments. EnCal runs on one PC with Pentium IV
(3.2GHz CPU, 2Gbyte memory) and RedHat Lunix 9 (Linux Kernel is 2.4.20-8).

The procedures of the experiments that include the followings:

1. represent primitive NBG set theory axioms and definitions with only entail-
ment and negation connectives,

2. reason out the logical theorem schemata of kth (k = 2, 3) degree fragment of
predicate strong relevant logics with only entailment and negation connec-
tives by using EnCal-Q, and

3. deduce jth (j = 2, 3) degree empirical theorems with EnCal-E by taking the
formulas obtained from procedure (1) as empirical premise and procedure
(2) as logical premises.

In this case study, the experiments mainly were carried out below 3rd degree,
for the larger the number of degree is, the more execution time of EnCal takes and
enormous the experimental results deduced are. We carried out our experiments
on EQen which is a predicate relevant logic system E with only entailment and
negation.

We divided the axiom schema sets of EQen as follows:

• EQenSet1 = {E1, E2’, E3, E4”, N1, N2, N3, IQ1, IQ3, IQ4},

• EQenSet2 = Set1 + {E4”’},

• EQenSet3 = Set2 + {E4’},

• EQenSet4 = Set3 + {E3’},
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Table 5.1: The data and results of the experiments
Premises Conclusions
LP EP 2nd emp 3rd emp

(ET) (ET)

EQenSet1.L3 2566 26 47 163
(5760s) (30780s)

EQenSet2.L3 2568 26 47 163
(8040s) (45960s)

EQenSet3.L3 2587 26 47 163
(6720s) (40740s)

EQenSet4.L3 23775 26 47 163
(64020s) (397560s)

where ‘E*’, ‘N*’, and ‘IQ*’ are axiom schemata of SRL in sec. 3.3.
Adopting the different axiom schema sets, We deduced their logical theo-

rem schemata of 3rd degree fragment, denoted by EQenSet1.L3, EQenSet2.L3,
EQenSet3.L3, and EQenSet4.L3.

The experimental results are showed in table 5.1. In the table, the leftest
column shows the name of logical premises used in the experiments; LP denotes the
number of logical premises, which are logical axiom schemata or logical theorem
schemata reasoned out; EP stands for the number of empirical premises, which
are the axioms and definitions of NBG set theory; 2nd emp and 3rd emp mean the
number of 2nd and 3rd degree NBG theorems obtained respectively; ET means the
execution time of EnCal-E. All the digits mean the number of formulas in every
field. The same set of empirical theorems are deduced from every set of logical
premises.

Here we give an example for an empirical theorem in 3rd degree results deduced
based on EQen’s 3rd degree fragment as follows:

∀x(∀u(M(u) ⇒ ((u ∈ x) ⇒ ¬DISJOINT (u, x))) ⇒ EMPTY (x)).

5.3.3 Discussion

Our experiments showed that all the empirical theorems deduced from the every
set of logical premises are same. The reason is that only same logical premises
which every set of logical premises has are used to deduce the empirical theorems.
The other logical premises were not used in these deduction. Having to process
the data which is unnecessary to deduce new conclusions is the nature of forward
reasoning for discovery or prediction.

This experiments showed that it is in principle possible to find theorems of the
NBG set theory by automated forward deduction based on SRL. The evaluation
of results of ATF by automated forward deduction is classified into three kinds:
rediscovery of a known theorem, finding the answer of open problems, and finding
a new theorem. If we can rediscover a known theorem in ATF by automated

47



forward deduction, then we can expect to get new theorems with the logic system
underlying the forward deduction, and inference rules and premises used in ATF.
Moreover if the argument of the known theorem is new proof of the theorem, to
rediscover known theorem is to find the new proof of the theorem. If we can find
the answer of open problems in ATF by automated forward deduction, we can
regard the program for the ATF as a tool to provide great assistance for scientists
in the fields. To find new theorems is one of goals of ATF. In this experiments, we
can rediscovery known theorems, and no paradoxical theorem was deduced. Thus,
we can expect to deduce new theorems by automated forward deduction based on
SRL.

On the other hand, our experiments showed that it takes long execution time
if the number of logic premises or the number of empirical theorems is large. Thus
an high-performance forward deduction engine is needed to deduce new theorems
in ATF by automated forward deduction.

5.3.4 Summary

We tried to perform ATF in NBG set theory by automated forward deduction
based on SRL, as a case study. In this case study, we deduced some NBG set
theory theorems from axioms of NBG set theory, but no paradoxical theorem was
deduced. Our results showed that it is in principle possible to find theorems of the
NBG set theory by automated forward deduction based on SRL.

5.4 Anticipatory reasoning in anticipatory reasoning-

reacting systems

5.4.1 Temporal relevant logics

The concept of an anticipatory system first proposed by Rosen in 1980s [42]. Rosen
considered that “an anticipatory system is one in which present change of state
depends upon future circumstance, rather than merely on the present or past” and
defined an anticipatory system as “a system containing a predictive model of itself
and/or its environment, which allows it to change state at an instant in accord
with the model’s prediction to a latter instant” [42]. Until now, philosophical dis-
cussions on anticipatory systems and their characteristics are still being continued
by scientists from various disciplines [14, 17, 18, 32, 33].

On the other hand, from the viewpoints of software reliability engineering and
information security engineering, what we need is really useful systems with an-
ticipatorily predictive capability to take anticipation for forestalling disasters and
attacks rather than the philosophical definition and intension of an anticipatory
system. In order to develop anticipatory systems useful in the real world, Cheng
has proposed a new type of reactive systems, named “Anticipatory Reasoning-
Reacting Systems,” as a certain class of anticipatory systems [12].

An anticipatory reasoning-reacting system, ARRS for short , is a computing
system containing a controller C with capabilities to measure and monitor the
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behavior of the whole system, a traditional reactive system RS, a predictive model
PM of RS and its external computing environment, and an anticipatory reasoning
engine ARE such that according to predictions by ARE based on PM, C can
order and control RS to carry out some operations with a high priority [12]. Since
anticipatory reasoning based on the predictive model is the only way for the system
to reason out predictions, both the predictive model PM and the anticipatory
reasoning engine ARE must be based on a sound logical basis.

Cheng has also proposed temporal relevant logics which are obtained by intro-
ducing temporal operators and related axiom schemata and inference rules into
SRL [8, 9]. Cheng has argued that temporal relevant logics are suitable logic sys-
tems to underlie PM and ARE by far than the temporal classical logics which are
one of conservative extension of CML [12].

The temporal operators and related axiom schemata and inference rules are
defined as follows [8, 9]:

Temporal operators:

G: future-tense always or henceforth operator
GA means “ It will always be the case in the future from now that A”.

H: past-tense always operator
HA means “ It has always been the case in the past up to now that A”.

F: future-tense sometime or eventually operator
FA means “ It will be the case at least once in the future from now that A”.

P: past-tense sometime operator
HA means “ It has been the case at least once in the past up to now that
A”.

These temporal operators are not independent and can be defined as follows:

GA =df ¬F¬A,

HA =df ¬P¬A,

FA =df ¬G¬A,

PA =df ¬H¬A.

Related axiom schemata

T1: G(A ⇒ B) ⇒ (GA ⇒ GB)

T2: H(A ⇒ B) ⇒ (HA ⇒ HB)

T3: A ⇒ G(PA)

T4: A ⇒ H(FA)

T5: GA ⇒ G(GA)

T6: (FA ∧ FB) ⇒ F(A ∧ FB) ∨ F(A ∧ B) ∨ F(FA ∧ B)

T7: (PA ∧ PB) ⇒ P(A ∧ PB) ∨ P(A ∧ B) ∨ P(PA ∧ B)

T8: GA ⇒ FA
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T9: HA ⇒ PA

T10: FA ⇒ F(FA)

T11: (A ∧ HA) ⇒ F(HA)

T12: (A ∧ GA) ⇒ P(GA)

Inference Rules:

TG: “from A to infer GA and HA” (Temporal Generalization)

Cheng could obtain some minimal or weakest temporal relevant logics as follows
[8, 9]:

T0T = T + {T1 ∼ T4 } + TG

T0Tc = Tc + {T1 ∼ T4 } + TG

T0E = E + {T1 ∼ T4 } + TG

T0Ec = Ec + {T1 ∼ T4 } + TG

T0R = R + {T1 ∼ T4 } + TG

T0Rc = Rc + {T1 ∼ T4 } + TG

Here, Tc, Ec, Rc, TcQ, EcQ, and RcQ are SRL proposed by Cheng [7, 10].
Note that the minimal or weakest temporal classical logic Kt = all axiom

schemata for CML + → E + {T1 ∼ T4 } + TG. Other characteristic axiom
schemata such as T5 ∼ T12 that correspond to various assumptions about time
can be added to T0T, T0Tc, T0E, T0Ec, T0R, and T0Rc respectively to obtain vari-
ous temporal relevant logics. These logics can be extended into various first-order
predicate logics by adding various symbols of quantifiers, individual variables, indi-
vidual constants, individual functions, and individual predicates into their formal
(object) languages, and introducing those usual axiom schemata and inference
rules relative to quantifiers.

5.4.2 Automated forward deduction based on temporal rel-
evant logics

An anticipatory reasoning engine ARE is indispensable components of ARRS.
Anticipatory reasoning is a reasoning to draw new, previously unknown and/or
unrecognized conclusions about some future event or events whose occurrence and
truth are uncertain at the point of time when the reasoning is being performed.

An ARE must be a forward deduction engine. Reasoning can be classified
into forward reasoning and backward reasoning. Forward reasoning is to infer
new conclusions from known facts or assumed hypotheses. Backward reasoning
is to find out the path which is from known facts or hypotheses to given goal or
sub-goal. Anticipatory reasoning is forward rather than backward because when
we perform anticipatory reasoning we cannot know some future event or events,
whose occurrence and truth are uncertain at the time point of the reasoning is
being performed, as a goal or sub-goal. Reasoning can be classified into three
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forms, deduction, induction and abduction. For an ARRS, the conclusions deduced
by the ARE must be definitely correct if the premises are correct. This can be
guaranteed by only deduction. Therefore, an ARE must be a forward deduction
engine.

From the philosophical viewpoint, the notion of anticipation itself is intrinsi-
cally time dependent. The earlier anticipatory reasoning draws conclusions, or the
farther the future event is predicted by anticipatory reasoning, the higher is its
degree of anticipation. To be a computing system useful in various applications
in the real world, an anticipatory system must have the ability of anticipatory
reasoning with some certain degree of anticipation to predict the occurrence and
truth of some future event or events. On the other hand, from the viewpoints of
software reliability engineering and information security engineering, a practical
anticipatory system must be able to perform any anticipatory reasoning to get
enough effective conclusions anticipatorily within an acceptable time in order to
satisfy the requirements of high reliability and high security from applications.
Since the most intrinsic characteristic of an anticipatory system is its ability of
taking anticipation, an anticipatory system that cannot satisfy the requirements
of anticipation and timeliness is useless at all in practices in the real world. There-
fore, for an anticipatory system with requirements of high reliability and high
security, its functioning is both anticipation-critical and time-critical.

Thus, we face a dilemma. On the one hand, as forward reasoning, anticipatory
reasoning should deal with a lot of intermediates, which are usually involved in
any forward reasoning, in order to get effective conclusions anticipatorily. On the
other hand, anticipatory reasoning should be performed as efficiently as possible
in order to keep a high degree of anticipation.

It may be possible to implement an anticipatory reasoning engine by using
automated forward deduction based on temporal relevant logics, and the paral-
lelization model proposed by us.

5.4.3 Summary

We have investigated what role automated forward deduction based on temporal
relevant logics can play in anticipatory systems with requirements of high reliabil-
ity and high security. We showed that the high-performance automated forward
deduction based on temporal relevant logics is necessary to implementation of an
anticipatory reasoning engine.

5.5 Spatial reasoning in geographic information

systems

5.5.1 Spatial relevant logics

Spatial knowledge, i.e. shape, size, distance, orientation, relative position, con-
nectivity, etc, plays an important role in our cognition and understanding of the
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world. There are many applications that need means for representing and reason-
ing about spatial knowledge, such as robotics, motion planning, machine vision,
solid modeling, spatial database systems, geographic information systems, dis-
tributed systems, natural language understanding, etc.

In the area of geographic information systems, until now, almost all existing
methodologies for representing and reasoning about spatial knowledge are some-
how based on CML or its various conservative extensions [21]. This approach, how-
ever, may be suitable to searching and describing a formal proof of a previously
specified statement, under the condition that we have complete and consistent
knowledge, but not necessarily suitable to forming a new concept and discovering
a new statement, in particular, in the case that our knowledge is incomplete and
inconsistent. This is because the aim, nature, and role of classical mathematical
logic is descriptive and non-predictive rather than prescriptive and predictive.

We propose a new family of relevant logic systems, named Spatial Relevant
Logic, as the fundamental logic system to underlie representing and reasoning
about geographic knowledge [13]. The logics are obtained by introducing region
connection predicates and axiom schemata of RCC [15, 40], point position pred-
icates and axiom schemata, and point adjacency predicates and axiom schemata
into SRL.

Let {r1, r2, r3, · · ·} be a countably infinite set of individual variables, called
region variables. Atomic formulas of the form C(r1, r2) are read as “region r1 con-
nects with region r2.” Let {p1, p2, p3, · · ·} be a countably infinite set of individual
variables, called point variables. Atomic formulas of the form I(p1, r1) are read as
“point p1 is in region r1.” Atomic formulas of the form B(p1, p2, p3) are read as
“points p1, p2, p3 is on a straight line and point p1 is between point p2 and point
p3.” Note that here we use a many-sorted language.

The region connection predicates, position predicates, axiom schemata, and
inference rules are as follows:

Primitive binary predicate:

C: connection
C(r1, r2) means ‘region r1 connects with region r2’.

I: be in
I(p1, r1) means ‘point p1 is in region r1’.

Arc: arc
Arc(p1, p2) means ‘p1 is adjacent to p2’.

Path: path
Path(p1, p2) means ‘there is a directed path from p1 to p2’.

B: be between
B(p1, p2, p3) means ‘points p1, p2, p3 is on a straight line and point p1 is
between point p2 and point p3’.

Defined Binary Predicates:

DC(r1, r2) =df ¬C(r1, r2)
DC(r1, r2) means ‘r1 is disconnected from r2’.
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P (r1, r2) =df ∀r3 (C(r3, r1) ⇒ C(r3, r2))
P (r1, r2) means ‘r1 is a part of r2’.

PP (r1, r2) =df P (r1, r2) ∧ (¬P (r2, r1))
PP (r1, r2) means ‘r1 is a proper part of r2’.

EQ(r1, r2) =df P (r1, r2) ∧ P (r2, r1)
EQ(r1, r2) means ‘r1 is identical with r2’.

O(r1, r2) =df ∃r3 (P (r3, r1) ∧ P (r3, r2))
O(r1, r2) means ‘r1 overlaps r2’.

DR(r1, r2) =df ¬O(r1, r2)
DR(r1, r2) means ‘r1 is discrete from r2’.

PO(r1, r2) =df O(r1, r2) ∧ (¬P (r1, r2)) ∧ (¬P (r2, r1))
PO(r1, r2) means ‘r1 partially overlaps r2’.

EC(r1, r2) =df C(r1, r2) ∧ (¬O(r1, r2))
PO(r1, r2) means ‘r1 is externally connected to r2’.

TPP (r1, r2) =df PP (r1, r2) ∧ ∃r3 (EC(r3, r1) ∧ EC(r3, r2))
TPP (r1, r2) means ‘r1 is a tangential proper part of r2’.

NTPP (r1, r2) =df PP (r1, r2) ∧ (¬∃r3 (EC(r3, r1) ∧ EC(r3, r2)))
NTPP (r1, r2) means ‘r1 is a nontangential proper part of r2’.

Axiom schemata

RCC1: ∀r1∀r2 (C(r1, r2) ⇒ C(r2, r1))

RCC2: ∀r1 (C(r1, r1))

PRCC1: ∀p1∀r1∀r2 ((I(p1, r1) ∧ DC(r1, r2)) ⇒ ¬I(p1, r2))

PRCC2: ∀p1∀r1∀r2 ((I(p1, r1) ∧ P (r1, r2)) ⇒ I(p1, r2))

PRCC3: ∀p1∀r1∀r2 ((I(p1, r1) ∧ PP (r1, r2)) ⇒ I(p1, r2))

PRCC4: ∀p1∀r1∀r2 ((I(p1, r1) ∧ EQ(r1, r2)) ⇒ I(p1, r2))

PRCC5: ∀r1∀r2 (O(r1, r2) ⇒ ∃p1 (I(p1, r1) ∧ I(p1, r2)))

PRCC6: ∀p1∀r1∀r2 ((I(p1, r1) ∧ DR(r1, r2)) ⇒ ¬I(p1, r2))

PRCC7: ∀r1∀r2(PO(r1, r2) ⇒
∃p1(I(p1, r1)∧I(p1, r2))∧∃p2(I(p2, r1)∧¬I(p2, r2))∃p3(¬I(p3, r1)∧I(p3, r2)))

PRCC8: ∀p1∀r1∀r2 ((I(p1, r1) ∧ EC(r1, r2)) ⇒ ¬I(p1, r2))

PRCC9: ∀p1∀r1∀r2 ((I(p1, r1) ∧ TPP (r1, r2)) ⇒ I(p1, r2))

PRCC10: ∀p1∀r1∀r2 ((I(p1, r1) ∧ NTPP (r1, r2)) ⇒ I(p1, r2))

PAC1: ∀p1∀p2(Arc(p1, p2) ⇒ Path(p1, p2))

PAC2: ∀p1∀p2∀p3(Path(p1, p2) ∧ Path(p2, p3) ⇒ Path(p1, p3))

PPC1: ∀p1∀p2(¬B(p1, p1, p2))

PPC2: ∀p1∀p2∀p3(B(p1, p2, p3) ⇒ B(p1, p3, p2))

PPC3: ∀p1∀p2∀p3(B(p1, p2, p3) ⇒ ¬B(p2, p1, p3))
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PPC4: ∀p1∀p2∀p3∀p4((B(p1, p2, p3) ∧ B(p4, p1, p3)) ⇒ B(p4, p2, p3))

PPC5: ∀p1∀p2∀p3∀p4((B(p1, p2, p3) ∧ B(p4, p1, p2)) ⇒ B(p4, p2, p3))

We can now obtain some spatial relevant logics as follows:

RTcQ = TcQ +
{ RCC1, RCC2, PRCC1 ∼ PRCC10, PAC1, PAC2, PPC1 ∼ PPC5 }

REcQ = EcQ +
{ RCC1, RCC2, PRCC1 ∼ PRCC10, PAC1, PAC2, PPC1 ∼ PPC5 }

RRcQ = RcQ +
{ RCC1, RCC2, PRCC1 ∼ PRCC10, PAC1, PAC2, PPC1 ∼ PPC5 }

Here, TcQ, EcQ, and RcQ are strong relevant predicate logics.

5.5.2 Automated forward deduction based on spatial rele-
vant logics

Here we give an example to show that the spatial relevant logic can underlie
representing and reasoning about spatial knowledge. The example is to investigate
what can be deduced based on a spatial relevant logic from a GIS about countries
and their cities in the world, and what will happen when a logical theorem of
CML, which is an implicational paradox, is added for deduction as a ‘valid’ logical
theorem.

Let us suppose that our GIS includes the following knowledge:
∀r1∀r2((C(r1, r2) ∧ PP (r2, Europe)) ⇒ PP (r1, Europe)), C(France, Germany),
C(France, Italy), I(Paris, France), I(Berlin, Germany), I(Rome, Italy),
PP (France, Europe), I(Tokyo, Japan), and I(Beijing, China).

Based on 2nd degree fragment of REcQ and limit the degree of nested ‘∧’ to 1,
we deduced 226 formulas from the above GIS. All the 226 formulas are relevant to
the GIS in the sense of conditional as well as facts. Some new facts in the deduced
226 formulas are: I(Paris, Europe), PP (Germany, Europe), PP (Italy, Europe),
I(Berlin, Europe), and I(Rome, Europe).

On the other hands, besides 2nd degree fragment of REcQ, we added a logical
theorem of CML ‘(A ∧ B) ⇒ (A ⇒ B)’, which is an implicational paradox, as a
‘valid’ logical theorem in our deduction, but kept other things as the same as the
above deduction. In this case, we deduced a lot of irrelevant conditionals such as
I(Berlin, Germany) ⇒ PP (France, Europe), I(Tokyo, Japan) ⇒ C(France, Italy),
PP (France, Europe) ⇒ I(Beijing, China) and so on. All these irrelevant condi-
tionals were not included in the results of the above deduction using 2nd degree
fragment of REcQ only.

The spatial relevant logics have the following possible applications: first, as
conservative extensions of SRL satisfying the strong relevance principle, the spatial
relevant logics can underlie relevant reasoning as well as truth-preserving reasoning
in the sense of conditional, ampliative reasoning, paracomplete reasoning, and
paraconsistent reasoning. Moreover, the logics can be used for reasoning about
relative relations among points as well as regions. Therefore, they can be used
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to represent and specify geographic relations in a geographic information system
based on incomplete or even inconsistent information at first, and then to reason
(again, not proving) about the unspecified new geographic relations. This is a very
useful way in modeling, designing, developing a geographic information system.
Probably, at present, the family of spatial relevant logics is the only one to have
such application.

Second, once we modeled a geographic information system and specified its
desirable properties with the formal language of the spatial relevant logics, we can
verify the properties based on the logics, even if there are some incompleteness
and inconsistency.

For the first and second applications, an automated reasoning and verifying
engine based on the spatial relevant logics is indispensable. We may implement a
spatial reasoning engine by using automated forward deduction based on spatial
relevant logics and the parallelization model proposed by us.

5.5.3 Summary

We have proposed spatial relevant logic as the fundamental logic system to underlie
representing and reasoning about geographic knowledge. We may implement a
spatial reasoning engine for geographic information systems by using automated
forward deduction based on spatial relevant logics and the parallelization model
proposed by us.
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Chapter 6

Conclusions

6.1 Contributions

In this thesis, in order to implement a practical forward deduction engine, we
investigated two problems of implementing automated forward deduction: the
one is about logic systems to underlie automated forward deduction and other is
about the performance of automated forward deduction. On the other hand, in
order to show usefulness of automated forward deduction based on strong relevant
logics, SRL for short, we also investigated some applications of automated forward
deduction based on SRL.

We presented a quantitative analysis and discussion on implicational paradoxes
in classical mathematical logic, CML for short, with the connective of implication
and negation, as the first step of quantitative comparative study between CML
and SRL. Our analysis results showed that the difference between the number
of the set of 1st ∼ kth degree logical theorem schemata of CML and that of its
subset of 1st ∼ kth degree logical theorem schemata satisfying strong relevant
principle must be larger and larger as k becomes large. On the other hand, our
analysis results showed that the number of implicational paradoxes in the set of
1st ∼ 3rd degree logical theorem schemata of CML is 7.13 times as many as the
number of logical theorem schemata of its subset of 1st ∼ 3rd degree logical theorem
schemata satisfying strong relevant principle. Thus the number of implicational
paradoxes in the set of 1st ∼ kth degree logical theorem schemata of CML must
be more than 7.13 times the number of logical theorem schemata of its subset
of 1st ∼ kth degree logical theorem schemata satisfying strong relevant principle
when k is more than 3. Implicational paradoxes spoil the validity of forward
deduction, and unnecessarily lengthen the execution time of automated forward
deduction. Consequently, as the logic systems underlying forward deduction, SRL
and traditional relevant logics, RL for short, are quantitatively more suitable by
far than CML and its various conservative extensions because both SRL and RL
include no implicational paradoxes in their theorems. We therefore showed that
automated deduction should be based on SRL, in order to implement a practical
forward deduction engine.

In order to solve the performance problem of forward deduction engines, we pre-
sented a model of a parallelization version of automated forward deduction based
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on master-slave model and implemented a parallelization version of an automated
forward deduction system for general-purpose entailment calculus, named EnCal,
based on the model on a shared-memory parallel computer and a clusters of PCs
as a case study to investigate the effectiveness of parallel processing for improving
the performance of automated forward deduction. Our experiments showed that
the execution time on both cases gets shorter in proportion to the increasement in
the number of processors without depending on the number of deduced conclusions
and given premises. Hence, improving the performance by parallel processing is
effective for not only EnCal but also forward deduction engines. We therefore
showed that it is in principle possible to implement a practical forward deduction
engine by using the our parallelization model of automated forward deduction.

We investigated the usefulness of automated forward deduction based on SRL
in scientific discovery. We tried to solve two logic puzzles on the reasoning approach
by automated forward deduction based on SRL as a particular case of scientific
discovery and succeeded to solve those puzzles. This case study showed that
automated forward deduction based on SRL is an useful tool to automate the
reasoning process in scientific discovery.

We investigated the problem of automated theorem finding by forward deduc-
tion and tried to find theorems in von Neumann-Bernays-Godel set theory, NBG
set theory for short, by automated forward deduction based on SRL as a case
study. In this case study, we deduced some NBG set theory theorems from ax-
ioms of NBG set theory, but no paradoxical theorem was deduced. Our results
showed that it is in principle possible to find theorems of the NBG set theory by
automated forward deduction based on SRL.

We investigated what role automated forward deduction based on temporal
relevant logics can play in anticipatory systems with requirements of high reliabil-
ity and high security. We showed that the high-performance automated forward
deduction based on temporal relevant logics is necessary to implementation of an
anticipatory reasoning engine.

We proposed spatial relevant logics as the fundamental logic system to underlie
representing and reasoning about geographic knowledge, and showed that a spa-
tial reasoning engine based on spatial relevant logics for geographic information
systems can be implemented following our approaches.

6.2 Future works

The ultimate goal of this research is to implement a practical forward deduction
engine and to apply the forward deduction engine into applications. There is a
gap between the goal and our contributions in this thesis.

First, we investigated the implicational paradoxes in the axiomatic system of
CML with only implication and negation, as the first step of quantitative compar-
ative study between CML and SRL. This is only a quantitative comparative study
between CML and the intersection between SRL and RL. A future work should be
to investigate whether SRL is quantitative suitable logic systems to underlie auto-
mated forward deduction than CML and RL, by quantitative comparative studies

57



between RL and SRL, or CML and SRL.
Second, we showed that the parallelization model proposed by us is an effec-

tive model for improving the performance of automated forward deduction. In the
model, all inference rules and previously deduced conclusions and given premises
are shared by all slaves. However, in order to implement a forward deduction
engine for scientific discovery, automated theorem finding, and geographic infor-
mation systems, dividing inference rules, previously deduced conclusions and given
premises into each address space of a slave is better than sharing them, because
among of given premises and deduced conclusions may be huge in those applica-
tions. A future work should be to investigate the parallelization model whose data
is divided into each address space of a slave.

Third, at present, EnCal cannot deal with various extensions of SRL, such
as temporal relevant logics or spatial relevant logics. Hence we have to improve
EnCal to deal with those logics. On the other hand, we have implemented only
a parallelization version of EnCal-P, but never done that of EnCal-Q, EnCal-Q2,
EnCal-E, and EnCal-E2. We therefore have to implement parallelization versions
of those.
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